
HAL Id: hal-03205744
https://hal.archives-ouvertes.fr/hal-03205744

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning for Connected Agents in a Partially Known
Environment

Arthur Queffelec, Ocan Sankur, François Schwarzentruber

To cite this version:
Arthur Queffelec, Ocan Sankur, François Schwarzentruber. Planning for Connected Agents in a Par-
tially Known Environment. AI 2021 - 34th Canadian Conference on Artificial Intelligence, May 2021,
Vancouver / Virtual, Canada. pp.1-23. �hal-03205744�

https://hal.archives-ouvertes.fr/hal-03205744
https://hal.archives-ouvertes.fr

Planning for Connected Agents in a Partially Known
Environment

Arthur Queffelec†, Ocan Sankur‡, François Schwarzentruber†
† Univ Rennes, CNRS, IRISA

‡ Univ Rennes, Inria, CNRS, IRISA

†‡firstname.lastname@irisa.fr

Abstract
The Connected Multi-Agent Path Finding (CMAPF) problem asks for a plan to

move a group of agents in a graph while respecting a connectivity constraint. We study
a generalization of CMAPF in which the graph is not entirely known in advance, but is
discovered by the agents during their mission. We present a framework introducing this
notion and study the problem of searching for a strategy to reach a configuration in this
setting. We prove the problem to be PSPACE-complete when requiring all agents to be
connected at all times, and NEXPTIME-complete in the decentralized case, regardless
of whether we consider a bound on the length of the execution.

Keywords: multi-agent path finding, multi-agent planning, connectivity, imperfect
knowledge, decentralized planning

1. Introduction

The coordination of mobile agents is at the heart of many real world problems such as
traffic control [1], robotics [2, 3], aviation [4] and more [5, 6]. Some of these problems have
multiple aspects which make them complex: (1) Some systems are multi-agent, that is, the
behaviors of agents influence others’ and these influences must be taken into consideration
when computing missions; this can be due for instance, to collisions [7], sensor interfer-
ences [8, 9] etc.; (2) Some missions must ensure connectivity, that is, ensure periodic or
constant connection to a station/agent to share acquired information [10]; (3) The environ-
ment may be only partially known, and the agents may discover it during the mission [11,
12]. Several works have considered problems containing these three aspects. For instance,
several algorithmic approaches have been investigated to solve the coordination of multi-
robot exploration [13–15]. Our objective in this paper is to present a framework to study
the theoretical complexity of planning problems with respect to these three aspects.

The theoretical complexity of some related problems have been studied in the literature.
Multi-Agent Path Finding (MAPF) is an important framework introduced to study collision-
free navigation of agents in warehouses (see [7, 16]). This problem was intensively studied
and gave rise to a popular algorithm known as Conflict-Based Search (CBS) [17]. An
extension of MAPF with connectivity constraints, called Connected MAPF (CMAPF), was
studied as well [18]. The complexity of CMAPF and algorithmic solutions were studied
in [19, 20]. However, CMAPF only addresses the multi-agent and connectivity aspects,
and not the partial knowledge of the environment. The latter aspect is considered in the
Canadian Traveler Problem (CTP), which is a well-known problem to study the navigation
of an agent in a partially known graph [21]. While the initial framework was for a single
agent, CTP has been extended to multiple agents in the settings of packet routing [22], multi-
robot exploration [23] and more [24]. While a notion of communication was considered in
[25, 26], it is limited to settings where all agents can receive information at all times or
only designated agents can send information. In contrast, we are interested in studying the
setting where agents’ ability to communicate depends on their positions in the graph, and
in establishing theoretical complexity results of resulting problems.

In this paper, we study the theoretical complexity of generating plans for a group of agents
to reach a given target configuration. More precisely, we analyze the impact of enforcing or

2

ignoring: (A) connectivity; (B) collision; (C) a bound on the length of the execution. For
(A), we consider either fully-connected strategies, requiring that the agents remain connected
at all times during the mission, or a decentralized strategy, allowing agents to disconnect
and reconnect. (B) In some applications, collisions can be handled by a local collision
avoidance system [18], and one can thus abstract away and ignore collisions in graph-based
planning algorithms. (C) By providing a bound on the execution length, we can study the
complexity of the decision problem associated to the optimization problem. Our results are
summarized in Table 1. Interestingly, The PSPACE algorithm for the connected problem
with a bounded execution is subtle and relies on a variant of the Savitch’s theorem [27]
we present here. Additionally, the PSPACE-completeness holds even in the case in which
agents can always communicate, thus the hardness of the problem already comes from
the incomplete knowledge of the movement graph. For the decentralized case, we prove the
NEXPTIME-hardness in the bounded and unbounded cases by two separate reductions from
the True Dependency Quantified Boolean Formula problem (TDQBF) [28], thus showing
that the problem becomes significantly harder in this case.

Let us compare our results with known complexity results. In the fully known environ-
ment, the CMAPF problem is PSPACE-complete in the connected and unbounded case [19],
while it is NP-complete in the bounded case (with the bound given in unary) [18]. Thus,
the partial knowledge of the environment does not render the problem harder in terms of
complexity. In contrast, recall that in MAPF (without connectivity), one can check the ex-
istence of a solution in polynomial time [29], while the bounded problem is NP-hard [30], so
the hardness is due to connectivity constraints. Some algorithms were presented for CMAPF
in [19] that can scale up to about ten agents. Since both problems are similar and belong to
PSPACE, one can hope that these approaches can be extended to the partial knowledge case.
On the other hand, our results show that the complexity of the decentralized case is signif-
icantly higher. While some tools and algorithms are available for Decentralized POMDPs,
which are in the same complexity class, the scalability is limited and the development of
efficient algorithms for this case seems more challenging (see [31] for a survey).

Decentralized Connected

bounded NEXP-complete PSPACE-complete
(Th. 7) (Th. 4, 5)

unbounded NEXP-complete PSPACE-complete
(Th. 6) (Th. 3)

Table 1. Complexity Results.

12

3 4
5

Vertex in V
Movement edge in Em

Undirected movement
edges in Em

Communication edge
in Ec

Figure 1. Example of a topological graph.

2. Preliminaries

Connected MAPF. We consider a setting where agents move on a graph, with the ver-
tices/nodes being their possible locations and the movement edges defining how they can
move. In addition, communication edges define how the agents can communicate. The
graphs we consider thus have two types of edges and are called topological graphs.

Definition 1. A topological graph is a tuple G = 〈V,Em, Ec〉, with V a finite non-empty
set of vertices, Em ⊆ V × V a set of movement edges and Ec ⊆ V × V a set of undirected
communication edges.

A movement edge (u, v) is said to be undirected if (u, v), (v, u) ∈ Em. Figure 1 gives an
example of a topological graph. For instance, an agent can go from 1 to 3 in one step. Two
agents at vertices 1 and 5 can communicate, but two agents at 1 and 4 cannot.

We suppose that each vertex has a self-loop movement edge and a self-loop communication
edge. This respectively represents the ability of an agent to stay at their location and to
communicate with a nearby agent (i.e. at the same location/vertex).

3

Definition 2. A configuration is a tuple c = 〈c1, . . . , cn〉 where ci is the vertex of agent i.

We write c→ c′ when (ci, c
′
i) ∈ Em for all 1 ≤ i ≤ n. This means that each agent i can

move from their vertex ci in c to their vertex c′i in c′ in one step.

Definition 3 (Execution). An execution π is a sequence of configurations 〈π[0], π[1], . . . , π[`]〉
such that π[t]→ π[t+ 1] for all t ∈ {0, . . . , `− 1}.

We denote the length of π by |π|, and write π[0..t − 1] to denote the sub-execution
〈π[0], π[1], . . . , π[t− 1]〉 of π. Moreover, last(π) denotes the last configuration of π.

We say that a configuration c is connected iff the subgraph of the vertices occupied by
the agents form a connected graph for relation Ec, i.e. the graph 〈Va, Ec ∩ (Va×Va)〉 is con-
nected with Va = {c1, . . . , cn}. An execution is said to be connected iff all its configurations
are connected. The Connected Multi-Agent Path Finding problem consists in finding a con-
nected execution for the agents from a given initial configuration to a target configuration.
We summarize below the known complexity results for the CMAPF problem.

Theorem 1 ([18]). The problem of deciding whether, in a given instance (G, cs, ct, k) where
k is unary, there is a connected execution from cs to ct of length at most k is NP-complete.

Theorem 2 ([19]). The problem of deciding whether for a given instance (G, cs, ct,∞),
there exists a connected execution from cs to ct is PSPACE-complete.

We do not consider collision constraints which would forbid agents from sharing the same
vertex. For CMAPF with perfect knowledge, executions are not harder to compute with or
without collision constraints [19, 20]. The same holds in our case, and we discuss, in the
Section 6, how to incorporate these constraints in our setting.
Dependency Quantified Boolean Formula. A Dependency QBF (DQBF) is a formula
in which dependencies of existential variables over universal variables are explicitly speci-
fied. A DQBF is of the form ∀y1, . . . , yn∃x1(Ox1

) . . . ∃xn(Oxn
) ψ, where each Oxi

is, the
dependency set, a subset of universally quantified variables, and ψ is a Boolean formula in
CNF over x1, . . . , xn, y1, . . . , yn. It is worth noting that a QBF can be seen as a DQBF with
Ox1
⊆ Ox2

⊆ ... ⊆ Oxn
.

The True DQBF (TDQBF) is the problem of deciding whether a given DQBF holds.
Formally, a DQBF ϕ holds iff there exists a collection of Skolem functions A = (Axi

:
{0, 1}Oxi → {0, 1})i=1..n such that replacing each existential variable xi by a Boolean for-
mula representing Axi , turns ψ into a tautology. TDQBF is NEXPTIME-complete [28], and
will be used to prove NEXPTIME lower bounds in Section 5.

3. Our framework

3.1. Modeling Imperfect Information

To formalize CMAPF in the imperfect information setting, let us show how to represent
the initial knowledge of the agents, and how the information they have evolves during the
execution. Agents initially know the exact set of vertices, but only have a lower and an upper
approximation of the actual graph: they know that some (communication or movement)
edges are certain (they must be present), while some are uncertain (they may be absent).

Definition 4 (Initial Knowledge). The initial knowledge is modeled by a pair of topological
graphs (G1, G2), with the graph G1 = 〈V,Em1 , Ec1〉 a lower bound, and G2 = 〈V,Em2 , Ec2〉 an
upper bound on the knowledge about the actual graph with Em1 ⊆ Em2 and Ec1 ⊆ Ec2.

The agents initially know G1 and G2 while the actual graph G = 〈V,Em, Ec〉 is initially
unknown to them. They only know that Em1 ⊆ Em ⊆ Em2 and Ec1 ⊆ Ec ⊆ Ec2, written as
G1 ⊆ G ⊆ G2. The perfect information case is captured by G1 = G2(= G).

4

s1

s2

s3

s4

s5

s6

?

?
?

Figure 2. An initial knowl-
edge (G1, G2).

s1 s2 s3

s4 s5s6

s7 all

?
?

Figure 3. An initial knowl-
edge of a topological graph.
Vertex s7 has communication
edges with all other vertices.

Certain movement edge
Certain undirected movement edge

? Uncertain movement edge
? Uncertain undirected movement edge

Certain communication edge
? Uncertain communication edge

A movement (resp. communication) edge is said to be certain (i.e. sure to be present)
if it is in Em1 (resp. Ec1); it is said uncertain (i.e. can be absent) if it is in Em2 \ Em1 (resp.
Ec2 \ Ec1). We assume that the communication edges of the actual graph are undirected, so
for all (u, v) ∈ Ec2 \ Ec1, either (u, v), (v, u) ∈ Ec, or (u, v), (v, u) 6∈ Ec.

We say that an edge (u, v) is an uncertain undirected movement edge when (u, v), (v, u) ∈
Em2 \Em1 . The environment can leave both edges (u, v), (v, u), remove both edges (u, v), (v, u),
but also remove (u, v) and leave (v, u), or remove (v, u) and leave (u, v). That is, the move-
ments edges of the actual graph are not necessarily undirected.

Example 1. Figure 2 depicts an initial knowledge (G1, G2). The area is divided in two zones
connected by two bridges, represented by the edges (s2, s4) and (s3, s5), with an uncertainty
on which bridge is open and on the communication between s1 and s4.

A strategy σi for agent i tells where to go next after a given execution π. Formally:

Definition 5. A strategy σi for agent i maps any execution π to a vertex such that
(v, σi(π)) ∈ Em where v is the vertex at which agent i is in the last configuration of π.

A joint strategy σ is a tuple 〈σ1, . . . , σn〉 where σi is a strategy for agent i. The outcome
of a joint strategy σ starting from configuration cs is the execution π defined by induction
as follows: π[0] is cs, and for t ≥ 1, π[t] is the configuration in which agent i is at vertex
σi(π[0..t− 1]).

In the context of imperfect information, the behaviors of the agents only depend on
their observations, as in imperfect information games as in [32]. The strategies, as defined
above, do not necessarily take observations of the agents into account. We will now formalize
observations and uniform strategies, that is, those respecting the observations of the agents.

In our setting, at any time, an agent observes all movement edges adjacent (both in- and
out-coming) to the vertex v it occupies. Moreover, they observe the presence or absence of
a communication edge between v and v′ if v′ is occupied by another agent with which there
is a direct or indirect communication (via other agents). Intuitively, during an execution,
at each step, each agent updates their knowledge about the graph with these observations
they receive. Moreover, they share all their knowledge with all agents with which they are
connected at each step.

The observation of adjacent movement edges has been a recurrent practice in theoretical
works [21, 33] as well as robotics [34, 35], and our formalism is inspired from these works.

The knowledge of an agent at any time corresponds intuitively to a pair of graphs as in
Definition 4. For agent i and execution π, let us denote by ki(π)G the knowledge of agent i
about the graph after observing the execution π in actual graph G. Given such knowl-
edge K = ki(π)

G, the agent can deduce an under-approximation and an over-approximation
of the actual graph; let us denote these by GK and G

K
respectively. In particular, if K is

the knowledge the agents have initially, then GK = G1 and G
K

= G2. We present a repre-
sentation of the knowledge using predicates in the appendix where a detailed formalization
of ki(π)G can be found.

5

In the rest of the paper, we assume all considered strategies to be uniform, that is, they
comply with the knowledge of the agents: the strategies prescribe the same move to all
executions that are indistinguishable with the agent’s observations. Formally, if |π| = |π′|
and ki(π)G = ki(π

′)G, then σi(π) = σi(π
′).

3.2. Decision Problems

We consider the decision problem of reaching a configuration ct from a configuration cs
in less than k steps, using uniform strategies. For two configurations cs, ct, let us call a
topological graph G (cs, ct)-admissible if there is an execution from cs to ct, which is not
necessarily connected.

Definition 6. We say that an instance (G1, G2, c
s, ct, k) is positive if there exists a joint

strategy σ such that in all (cs, ct)-admissible graphs G satisfying G1 ⊆ G ⊆ G2, the outcome
of σ starting in cs ends in ct in less than k steps.

Observe that the above problem requires that a strategy ensures the reachability of the
target configuration only for graphs that are (cs, ct)-admissible and compatible with the
initial knowledge. In fact, intuitively, we would like the strategy to work under all possible
graphs G with G1 ⊆ G ⊆ G2. However, requiring a strategy to ensure reachability in a non-
admissible graph does not make sense, since even a strategy with full information would fail.
We thus require the strategies to make their best efforts, that is, to ensure the objective
unless it is physically impossible.

Example 2. Consider the example of Figure 2. If both bridges (i.e. movement edges (s2, s4)
and (s3, s5)) are absent in the actual graph, the graph is not (s1, s6)-admissible and there
cannot be a strategy ensuring reachability. The admissible graphs contain either (s2, s4),
or (s3, s5), or possibly both. Note that, this instance is negative for k < 6 (that is, it
does not admit a solution). Indeed, consider a strategy that moves the agent, for instance,
to s2. In the graph where (s2, s4) is absent, the agent would need to come back to s1 and
take the alternative path, which requires an execution of total length 6; and the situation is
symmetric if the first move is towards s3. The instance is nonetheless positive for k ≥ 6
with the described strategy. However, if the edges (s2, s1) and (s3, s1) were not present, then
the instance would be negative. In fact, once the agent moves to s2 or s3, they get stuck if
the graph only contains the other bridge.

We now define the connected version of Definition 6. For two configurations cs, ct, we say
that a topological graph G is (cs, ct)-c-admissible if there is a connected execution from cs

to ct. We will often omit the pair of configurations which will be clear from the context,
and write simply admissible or c-admissible.

Definition 7. We say that an instance (G1, G2, c
s, ct, k) is c-positive if there exists a joint

strategy σ such that in all (cs, ct)-c-admissible graphs G satisfying G1 ⊆ G ⊆ G2, the
outcome of σ starting in cs is connected and ends in ct in less than k steps.

In the connected case, agents cannot visit a disconnected configuration. Hence, the
considered strategies only visit configurations that are certainly connected. Observe that
agents can make observations about the presence or absence of communication edges while
being connected and use this information later.

Example 3. Let us illustrate the above property on the example of Figure 3. Assume there
are two agents, the starting and goal configurations are cs = 〈s1, s6〉 and ct = 〈s5, s7〉,
and the only uncertainty is about the movement edges (s3, s5) and (s4, s5). Here, Agent 2
could immediately move to her target s7; however, she could also cooperate with Agent 1 and
lower the total completion time. Indeed, from their start configuration 〈s1, s6〉, the agents

6

first move to 〈s2, s4〉 where Agent 2 observes whether (s4, s5) is present. Assume the edge
is present. Then, they follow the sequence 〈s4, s6〉 · 〈s5, s7〉; and otherwise 〈s3, s6〉 · 〈s5, s7〉.
Thus, in order to minimize the length of the execution, the agents do not always take their
shortest paths but might help other agents by obtaining information about the graph.

Consider now the same example in which the communication edge (s3, s6) is uncertain.
If this edge is absent then Agent 2 cannot help Agent 1 achieve the target faster since if the
former moves to s4 and (s4, s5) is absent, then, in order to maintain connectivity, the next
configurations should be 〈s4, s6〉 · 〈s2, s7〉 · 〈s3, s7〉 · 〈s5, s7〉. An execution of the same size is
obtained when Agent 2 moves to s7 in the first step.

For both Definitions 6 and 7 above, let us call a joint strategy a witness if it witnesses
the fact that the given instance is positive, and respectively, c-positive.

We instantiate the Connected MAPF problem in four different settings. The four fol-
lowing decision problems are defined depending on whether we consider the connectivity
requirement and whether the bound is finite. Note that the bounded problems are the
decision problems associated to the optimization problems.

Bounded Decentralized Reachability. Is given
(G1, G2, c

s, ct, k), with k <∞, positive?

Bounded Connected Reachability. Is given
(G1, G2, c

s, ct, k), with k <∞, c-positive?

Unbounded Decentralized Reachability. Is
given (G1, G2, c

s, ct,∞) positive?

Unbounded Connected Reachability. Given
(G1, G2, c

s, ct,∞) c-positive?

As we will see, the encoding of the integer k does not change the overall complexity.
Lower bounds are all obtained directly for the unary encoding; the lower bounds for the
binary encoding follows. Concerning the upper bounds, we explain for each case how to
design an algorithm with k encoded in binary.

4. Connected Reachability

We first address the case where agents must be connected at each step of the execution.
In this case, agents share their knowledge at all times and thus the group of agents can be
considered as a single agent playing against the environment.

4.1. Unbounded Case

We first focus on the existence of an unbounded connected strategy. Interestingly, we
show that verifying the existence of a connected strategy in a partially known environment
is not harder than in a perfectly known environment.

Theorem 3. The unbounded connected reachability problem is PSPACE-complete.

4.2. Bounded Case

We now study the existence of a bounded connected strategy. We show that this prob-
lem is PSPACE-complete even when the communication graph is complete. Please find in
supplementary material detailed proofs of the Lemmas 1, 2 and Theorem 5.

Theorem 4. The bounded connected reachability problem is in PSPACE when the bound is
given in binary.

Proof. Let us first prove the upper bound when k is given in unary. As APTIME = PSPACE
[36], we give an alternating algorithm that runs in polynomial time, as follows. At each step,
the existential player chooses the next connected configuration to move the agents; and the
universal player chooses the information about the newly discovered edges. After k steps

7

sz vz

uz

u¬z

uz tz

sz

s¬z

vz

v¬z

lz

rz

r¬z

l¬z

t¬z

tz

. . .
3(i− 1) + 1

. . .
3(i− 1) + 2

. . .
3(i− 1) + 2

. . .
3(n− i) + 2

∀z?
∃z

∀z
?
∃z

. . .
3(n− i)− 1

. . .
3(n− i)− 1

?

?

?

?

(a) Variable gadget for variable z. Edges between vz and
l¬z , and between vz and rz are both certain if z is existen-
tial and both uncertain if z is universal.

Certain Movement edge
? Uncertain Movement edge
∀z?
∃z

Movement edge that is certain if z is
existential and uncertain if z is univer-
sal

(vz , tγ) ∈ Em1 when z is an occurrence in γ
(v¬z , tγ) ∈ Em1 when ¬z is an occurrence in γ

sγ vγ

rγ

lγ

tγ. . .
3(n− 1) + 3 ?

?

(b) Clause gadget γ.

Figure 4. Gadgets for the reduction from QBF into the bounded reachability problem
in the complete connectivity case.

the algorithm accepts if the target configuration is reached, or the revealed edges mean that
the graph is not c-admissible. The number of steps is bounded by k, which is polynomial,
thus the algorithm runs in polynomial time.

There is one subtlety to prove the correctness. The alternating algorithm actually cor-
responds to a slight variant of our setting which can be seen as a game. In our setting,
the environment chooses a graph G with G1 ⊆ G ⊆ G2 at the beginning, and the agents
discover the graph G as they move. In contrast, in the alternating algorithm, the universal
player reveals the graph step by step; therefore the environment might adapt the graph to
the moves of the existential player.

Lemma 1. The alternating algorithm is correct.

When k is binary, the previous algorithm does not run in polynomial time. However,
observe that the number of alternations can be bounded by a polynomial because there is
only a polynomial number of steps in which the universal players reveal new information to
the coalition of agents. In fact, the universal player is only useful when some agent is at a
vertex that has not been seen before, and this can only happen a linear number of times.
Furthermore, the previous algorithm runs in polynomial space.

When k is binary, our problem is in STA(poly(n), ∗, poly(n)) where STA(s(n), t(n), a(n))
is the set of problems decided in space O(s(n)), time O(t(n)) with O(a(n))) alternations.
Our problem is in PSPACE thanks to the generalization of Savitch’s theorem we prove:

Lemma 2. STA(poly(n), ∗, poly(n)) ⊆ PSPACE.

Intuitively, this lemma is proved by guessing the computations between each universal
choice by a PSPACE oracle, which yields an overall PSPACE algorithm. �

Theorem 5. The bounded connected reachability problem with complete connectivity is
PSPACE-hard.

Proof. The lower bound is proven by reduction from TQBF.
Consider a QBF ϕ of the form ∀z1∃z2 . . . Qnznψ where ψ is a Boolean formula in con-

junctive normal form with n variables and m clauses.
In the reduction, we call a movement path, from node v to node u, a chain of nodes

linking v to u by movement edges. In addition, we denote an occurrence of a positive (resp.
negative) literal of a variable z, by z (resp. ¬z)

8

We create the graphs G1 and G2 as described in Figure 6. More precisely, for each
variable z, we create a gadget shown in Figure 6a. For each clause, we create a gadget as
depicted in Figure 6b. In addition, we create a movement edge between a node vz (resp.
v¬z) and a node tγ if the literal z (resp. ¬z) is present in the clause γ.

We define the initial and target configurations cs, ct as follows. There is a single agent at
each vertex of the form sγ (resp. sz) whose target is tγ (resp. tz). Furthermore, at each sz
(resp. s¬z) there is one agent for each clause that contains z (resp. ¬z) and her target is tz
(resp. t¬z).

We show that ϕ is true iff (G1, G2, c
s, ct, k) is c-positive with k = 3(n− 1) + 5.

For simplicity, we classify the agents as follows.

• A Variable agent is an agent starting at a node sz;
• a Clause agent is an agent starting at a node sγ ;
• a Positive (resp. negative) occurrence agent is an agent starting at sz (resp. s¬z).

(⇒) Assume that the QBF ϕ is true. There exists a collection of Skolem functions A such
that for each existential variable zi (where i is even), and an assignment ν to universally
quantified variables in z1, z3, . . . , zi−1, Azi(ν) ∈ {>,⊥} is the value assigned to zi such
that ϕ is true under assignment ν augmented with the values of A. We construct the
following strategy σ, which guarantees that ct is reached in k steps from cs.

Intuitively, the lengths of the initial movement paths are designed so that agents starting
at szi arrive at vzi in the order of their indices. For an existential variable agent, the choice
of the successor from vzi determines the value of zi; while for a universal variable agent, the
choice is made by the environment. More precisely, if the agent moves to rzi , then zi is set
to true, if she moves to l¬zi it is set to false.

Formally, all agents start by moving to their respective v nodes (e.g. A clause agent at
sγ moves to vγ). They arrive at these nodes at different moments due to the sizes of their
movement paths. An existential variable agent arrives at node vzi at time 3(i− 1) + 1. At
this point, all universal variable agents among z1, z3, . . . , zi−1 have arrived to their respective
nodes vzj , thus revealing the values of these variables. Let ν be this assignment. If Azi(ν) =
>, the agent moves to rzi , and otherwise, to l¬zi .

When a universal variable agent arrives to vzi at time 3(i − 1) + 1, she follows the only
edge dictated by the environment, either to rzi or to l¬zi . This assigns > to the variable zi
in the former case, and ⊥ in the latter case. Observe that if the graph is admissible, then
there must exist a path from source to target for each agent; this means that one of these
edges must be present.

Consider a positive (resp. negative) occurrence agent associated to a clause γ. This agent
arrives to vzi (resp. v¬zi) at time 3(i− 1) + 2. Observe that the variable agent has already
determined the value of zi in the previous step.
• if zi is assigned > (resp. ⊥) then the agent moves to tγ , observe which edges are

available at tγ , and immediately comes back to vzi (resp. v¬zi). Now, the edge between rzi
(resp. l¬zi) and uzi (resp. u¬zi) has been observed by agent zi; so if this edge is present,
she moves to rzi and uzi ; and if not, then the edge from lzi to uzi must be available, and
she arrives to tzi (resp. t¬zi) at time k.
• if zi is assigned ⊥ (resp. >) then she does not visit tγ , but moves to lzi (resp. l¬zi).

If the edge between lzi (resp. l¬zi) and uzi (resp. u¬zi) is available, she moves to tzi (resp.
t¬zi), otherwise she moves back and reach tzi (resp. t¬zi) at time k, through rzi (resp.
r¬zi).

It remains to argue that clause agents can reach their target nodes within k steps. Since ϕ
is true, by the definition of A, whatever the choice for the universal variables, some literal `
of each clause γ is assigned to true. Therefore, the positive or negative occurrence agent
corresponding to this literal visits tγ , thus revealing the edges available from tγ to rγ and

9

lγ . Note that at least one of these edges must be available for the graph to be admissible.
Thus, a clause agent arriving to vγ at time 3(n − 1) + 3 can follow the available path to
reach tγ exactly at time k.

(⇐) Let σ be a witness joint strategy. Following σ, each clause agent c must know the
available edges in the rest of their paths at time 3(n − 1) + 3 since otherwise they cannot
ensure reaching tγ at time k. Thus, for each clause γ, the node tγ is visited by some
occurrence agent under strategy σ. Furthermore, an occurrence agent z (resp. ¬z) can
visit node tγ and still make it to tz (resp. t¬z) in time iff the associated variable agent has
observed the presence of the edge between uz (resp. u¬z) and rz (resp. l¬z) beforehand.
In fact, otherwise, if the occurrence agent makes a wrong guess between lz and rz, they
will not arrive to tz (resp. t¬z) at time k. Hence, the joint strategy of the variable agents
determines an assignment function which satisfies ϕ.

�

Our reduction actually builds an undirected movement graph. Thus, PSPACE-hardness
holds already for undirected movement graphs. Note that in our current setting, pairs of
uncertain edges of the form (u, v) and (v, u) are treated separately, but the lower bound
proof still holds when they are seen as one.

5. Decentralized Reachability

We now tackle the case where agents are allowed to be disconnected; at each configuration,
they share their knowledge with all agents to which they are connected. This case is harder
because agents no longer follow a centralized strategy and they must cooperate to exchange
information at the right moment to reach their targets.

5.1. Unbounded Case

Theorem 6. The unbounded decentralized reachability problem is NEXPTIME-complete.

Proof Sketch. For the upper bound, an NEXPTIME algorithm consists in guessing uniform
strategies for all agents and checking whether the joint strategy is a witness. Such a strategy
has exponential size since it is a function of the sets of knowledge of the agents and the
current vertex. One can enumerate all graphs G between G1 and G2, and execute the joint
strategy onG to check that it ensures the reachability of the target. Moreover, the executions
to be checked have at most exponential length. In fact, executions can be seen as paths in a
meta-graph where vertices are configurations augmented with the sets of knowledge of the
agents. This meta-graph is of exponential size, so it is sufficient to consider executions of
exponential length. The overall non-deterministic algorithm is thus in exponential time.

The lower bound is shown by reduction from TDQBF. Given a DQBF
ϕ = ∀y1, . . . , yn∃x1(Ox1

) . . . ∃xn(Oxn
) ψ, we build an instance (G1, G2, c

s, ct, k) of un-
bounded decentralized reachability. We denote by γ1, . . . , γm the clauses in ψ.

The graph G1 and G2 as follows. For each variable z, we create the gadget depicted in
Figure 5a.

We create the observation gadget for all existential variables x and for all (universal)
variables y ∈ Ox, depicted in Figure 5b. For convenience, we write O for the pair (x, y)
corresponding to observation of y by x.

Finally, we create the clause gadget, depicted in Figure 5c. A vertex γi certainly commu-
nicates with >z iff z ∈ γi, and with ⊥z iff ¬z ∈ γi. Moreover, the vertex vγ communicates
with all >z and ⊥z for all variables z.

We define the initial and target configurations as cs = 〈sγ , sγ1 , . . . , sγm , sx1
, . . . , sxn

,
sy1 , . . . , syn , sO1

, . . . , sOk
〉, and ct = 〈tγ , tγ1 , . . . , tγm , tx1

, . . . , txn
, ty1 , . . . , tyn , tO1

, . . . , tOk
〉.

10

sz vz

>z

⊥z
tz

∀z
?
∃z
∀z?
∃z

(a) Gadget for variable z. Both edges (vz ,>z)
and (vz ,⊥z) are certain (resp. uncertain) if z is
existential (resp. universal).

sO vy

vO

vx

tO

(b) Gadget for the observation O of universal
variable y from existential variable x.

sγ vγ uγ1

lγ1

rγ1

γ1

s1

t1

?

?

. . . uγk

lγk

rγk

γk

sk

tk

?

?
tγ

(c) Clause gadget.

Certain movement edge
Certain communication edge

? Uncertain movement edge
∀z?
∃z

Certain (resp. uncertain) movement edge if z
is existential (resp. universal)

(>z , γi) ∈ Ec1 when z appears in γi
(⊥z , γi) ∈ Ec1 when ¬z appears in γi
(>z , vγ) ∈ Ec1, (⊥z , vγ) ∈ Ec1

Figure 5. Gadgets in the reduction from DQBF to unbounded decentralized reachability.

Lemma 3. DQBF ϕ holds if and only if (G1, G2, c
s, ct,∞) is positive.

Proof. We denote the agents as such: (1) an agent that starts at sz as the existential agent z
if z is an existential variable; the agent is called universal if z is universal; (2) the verification
agent is the one starting at sγ ; (3) the clause agents γi start at sγi ; (4) the observation
agents O start at sO.

(⇒) Suppose the DQBF ϕ holds, and let A be the collection of Skolem functions. We
build the following joint strategy. The environment chooses the truth values of universal
variables z by deleting some edges vz to >z or vz to ⊥z. If the environment deletes the edge
vz to >z, the agent is forced to pass in ⊥z, thus the variable z is considered to be false. If
the environment deletes the edge vz to ⊥z, the agent is forced to pass in >z, thus variable z
is considered to be true. If the environment deletes neither edge, then we define the strategy
for agent ay to choose to pass in y, making y true by default.

The rest of the strategy is defined as follows. At the first step, each variable agent for
variable z moves to vz, and each observation agent for the pair (x, y) moves to vy, and thus
observes the value of universal variable y. At the second step, existential agents remain
in place, while observation agents move to vO, thus sharing their observations with the
corresponding existential agents. Thus, at this point, each existential agent corresponding
to variable x knows the values of all universal variables y ∈ Ox. Then, agent z moves to >z
if Az(ν) = 1 and to ⊥z otherwise, where ν is the valuation of the variables in Oz.

All clause agents move from si to γi and remain at γi for two steps so that all existential
and universal variable agents z are at >z or ⊥z. The verification moves to vγ and also
waits for two steps. Since each clause is satisfied by the currently read valuation, each
clause agent γi communicates at least with one existential or universal agent. Thus, the
verification agent communicates with all clause agents via these variable agents. Since the
clause agents communicate with the verification agent at this moment, the latter can see
which edges are present in the clause gadget, and can continue go to tγ without getting
stuck.

11

(⇐) Conversely, suppose there is a witness joint strategy, in particular ensuring that
the verification agent goes to tz. This means that the agent must have received all the
information about the topology around vertices γ1, . . . , γk. But this is only possible if the
agents have occupied a configuration in which the verification agent is at vγ , all clause agents
are at γi such that for each clause γi, there is at least one variable agent z at >z if z ∈ γi
and at ⊥z if ¬z ∈ γi. Thus, ϕ is a positive instance of TDQBF.

�

�

5.2. Bounded Case

In the bounded case, the problem is NEXPTIME-complete independently of the encoding
of the bound. Moreover, the hardness holds even for undirected graphs.

Theorem 7. The bounded decentralized reachability problem is NEXPTIME-complete.
NEXPTIME-hardness holds for undirected graphs.

The NEXPTIME algorithm is similar to that of Theorem 6. We just add a counter in
the algorithm to count the number of steps when the joint strategy is checked. The lower
bound is by reduction from TDQBF and follows the ideas of the reduction in Theorem 6.

6. Discussion

Additional Results. We present results obtained by a simple observation/modification.
Unbounded Reachability and Undirected Graphs. Both the unbounded connected and

unbounded decentralized reachability become trivial on undirected graphs. This is because
we only require reachability for (c-)admissible graphs. In the decentralized case, each agent
can run a DFS independently, and eventually reach their targets in at most 2|V | steps, and
a similar search can be done by the set of agents in the connected case.

Base Station. Several works consider a designated base vertex to which all agents must
stay connected during the execution [19, 20, 37]. This concept is only relevant in the con-
nected case. Our results also hold with this additional constraint. In fact, the lower bound
of Theorem 3 follows from [19], which proves the bound also with a base. In Theorem 5, we
can add the base vertex as an isolated vertex so that the reduction is still valid.

Collisions. We did not require the paths to be collision-free in the results presented in
this paper. However, this property is already ensured by our proofs or can be obtained by
simple modifications. The lower bound proof of Theorem 3 relies on Theorem 2 from [19]
which holds with collision constraints as well, so this is also true for our case. The proof of
Theorem 5 does not generate collision-free paths as the groups of occurrence agents start
and finish at the same location and follow almost the same path. This proof can be adapted
to prevent collisions by delaying each occurrence agent by 3 steps behind one another.
This can be achieved easily by extending the movement paths and shifting the starting
location and target location of an agent up by 3 vertices behind the previous agent. The
proof of lower bound of Theorem 6 features a construction ensuring a collision-free strategy.
Indeed, the observations agents only need to take turns to visit the universal variables.
Thus, the result holds with collision constraints as well. The algorithms of Theorem 3, 5,
and 7 can be adapted by restricting all considered configurations to collision-free ones; while
c-admissibility of a graph with collision constraints can be checked using Theorem 2.

Graph Classes. The MAPF and CMAPF problems have been studied for different classes
of graphs (planar, grid, . . .). The proof of lower bound in Theorem 3 relies on the proof of
unbounded reachability done in [20], thus the result of PSPACE-hardness on planar graphs
also carries over to our problem. Planar QBF is known to be PSPACE-complete [38], and

12

the construction of Theorem 5 is such that when applied to a planar QBF, the resulting
graph is planar. Our PSPACE-completeness result thus holds on planar graphs.
Related Work. Different definitions of robust plans [39–41] have been studied. A k-robust
plan guarantees the reachability of the target in the events of at most k delays. A p-robust
plan executes without a conflict with probability at least p. Our framework does not consider
delayed agents but focus on synchronous executions with imperfect knowledge of the area.

The problem of MAPF with a dynamic environment has multiple formulations. The Ad-
versarial Cooperative Path-Finding [42] considers that the obstacles are agents which reason
to prevent the cooperation to reach its goal. [43] considered the problem where the dynamics
of the environment is predictable. Additionally, when obstacles have unknown dynamics,
one can estimate their movements and plan to minimize the probability of a collision [44],
or predict their movements [45] and plan online the movement of the agents [46]. In our
setting, the environment is static, thus, all observations are fixed.

MAPF with Uncertainty (MAPFU) asks for a plan which guarantees that mishaps, local-
ization and sensing errors do not impact the proper execution of the plan. This problem can
be solved by temporal logic [47], POMDPs [48], replanning [49–51], interaction regions [1,
52], and belief space planning [53–55]. Nebel et al. [56] studied the MAPF problem with an
uncertainty on the destination of the agents and lack of communication. The asynchronous
movement of the agents, studied in those papers, cannot be expressed in our framework as
we require the agent to follow some universal clock to execute their plan.
Perspectives. We proposed a setting for CMAPF in the imperfect case and studied the
theoretical complexity of the reachability problem. The first natural question is to find
classes of graphs (e.g. grid graphs) on which the reachability problem is easier to solve, as it
was done for MAPF in [57, 58], and CMAPF in [20]. Another possible direction is to study
the coverage of all vertices [20]. An alternative way to handle non-admissible graphs is to
require that agents return to their starting configuration if the graph is discovered not to be
admissible. We believe that such variants should be as hard as reachability. Furthermore,
there are several possible generalizations that could be considered by introducing dynamic
environments (instead of static), faulty sensing of agents, robustness, uncertainty, etc.

References

[1] K. Dresner and P. Stone. “A Multiagent Approach to Autonomous Intersection Management”.
In: JAIR 31.1 (2008), 591–656. doi: 10.1613/jair.2502.

[2] E. Erdem, D. G. Kisa, U. Oztok, and P. Schüller. “A General Formal Framework for Pathfind-
ing Problems with Multiple Agents”. In: Proc. of AAAI. 2013, 290–296.

[3] J. Yu and S. LaValle. “Planning Optimal Paths for Multiple Robots on Graphs”. In: 2012,
pp. 3612–3617. doi: 10.1109/ICRA.2013.6631084.

[4] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli. “Decentralized Cooperative Policy for
Conflict Resolution in Multivehicle Systems”. In: IEEE Trans, on Rob. 23.6 (2007), 1170–1183.
doi: 10.1109/TRO.2007.909810.

[5] D. Silver. “Cooperative Pathfinding”. In: Proc. of AIIDE. 2005, 117–122.
[6] J. Yu and S. M. LaValle. “Optimal Multirobot Path Planning on Graphs: Complete Al-

gorithms and Effective Heuristics”. In: IEEE Trans. on Rob. 32.5 (2016), 1163–1177. doi:
10.1109/TRO.2016.2593448.

[7] H. Ma and S. Koenig. “AI Buzzwords Explained: Multi-Agent Path Finding (MAPF)”. In:
AI Matters 3 (2017). doi: 10.1145/3137574.3137579.

[8] D. Goldberg and M. J. Matarić. “Interference as a Tool for Designing and Evaluating Multi-
Robot Controllers”. In: Proc. of AAAI. 1997, 637–642.

[9] M. Schneider-Fontán and M. Mataric. “Territorial multi-robot task division”. In: IEEE Trans.
on Rob. and Autom. 14 (1998), pp. 815–822.

https://doi.org/10.1613/jair.2502
https://doi.org/10.1109/ICRA.2013.6631084
https://doi.org/10.1109/TRO.2007.909810
https://doi.org/10.1109/TRO.2016.2593448
https://doi.org/10.1145/3137574.3137579

13

[10] F. Amigoni, J. Banfi, and N. Basilico. “Multirobot Exploration of Communication-Restricted
Environments: A Survey”. In: IEEE Intelli. Sys. 32.6 (2017), pp. 48–57. doi: 10.1109/MIS.
2017.4531226.

[11] N. Rao, S. Kareti, W. Shi, and S. Iyengar. “Robot navigation in unknown terrains: Introduc-
tory survey of non-heuristic algorithms”. In: 1993.

[12] S. Thrun. “Robotic Mapping: A Survey”. In: Exploring Artificial Intelligence in the New
Millennium. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, 1–35.

[13] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. “Coordinated multi-robot explo-
ration”. In: IEEE Transactions on Robotics 21.3 (2005), pp. 376–386. doi: 10.1109/TRO.
2004.839232.

[14] K. M. Wurm, C. Stachniss, and W. Burgard. “Coordinated multi-robot exploration using a
segmentation of the environment”. In: IROS. IEEE. 2008, pp. 1160–1165.

[15] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. “Coordinated multi-robot exploration under
communication constraints using decentralized markov decision processes”. In: Proc. of AAAI.
Vol. 26. 1. 2012.

[16] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. Sturtevant,
G. Wagner, and P. Surynek. “Search-based optimal solvers for the multi-agent pathfinding
problem: Summary and challenges”. In: SoCS. 2017, pp. 28–37.

[17] G. Sharon, R. Stern, A. Felner, and N. Sturtevant. “Conflict-based search for optimal multi-
agent pathfinding”. In: Artificial Intelligence 219 (Feb. 2015), pp. 40–66. doi: 10.1016/j.
artint.2014.11.006.

[18] G. A. Hollinger and S. Singh. “Multirobot Coordination With Periodic Connectivity: Theory
and Experiments”. In: IEEE Trans. on Rob. 28.4 (2012), pp. 967–973. doi: 10.1109/TRO.
2012.2190178.

[19] D. Tateo, J. Banfi, A. Riva, F. Amigoni, and A. Bonarini. “Multiagent Connected Path
Planning: PSPACE-Completeness and How to Deal With It”. In: Thirty-Second Conference
on Artificial Intelligence, 2018.

[20] T. Charrier, A. Queffelec, O. Sankur, and F. Schwarzentruber. “Complexity of planning for
connected agents”. In: JAAMAS 34.2 (2020), p. 44. doi: 10.1007/s10458-020-09468-5.

[21] C. H. Papadimitriou and M. Yannakakis. “Shortest paths without a map”. In: Theoretical
Computer Science 84.1 (1991), pp. 127–150. doi: 10.1016/0304-3975(91)90263-2.

[22] A. Itai and H. Shachnai. “Adaptive source routing in high-speed networks”. In: ISTCS. 1993,
pp. 212–221. doi: 10.1109/ISTCS.1993.253468.

[23] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. “Collaborative multi-robot ex-
ploration”. In: Proc. of ICRA. Vol. 1. 2000, pp. 476–481. doi: 10.1109/ROBOT.2000.844100.

[24] L. V. Lita, J. Schulte, and S. Thrun. “A System for Multi-Agent Coordination in Uncertain
Environments”. In: Proc. of AGENTS. 2001, pp. 21–22. doi: 10.1145/375735.375806.

[25] H. Zhang and Y. Xu. “The k-Canadian Travelers Problem with Communication”. In: FAW-
AAIM. 2011, pp. 17–28. doi: 10.1007/s10878-012-9503-x.

[26] D. Shiri and F. S. Salman. “On the Online Multi-Agent O—D k-Canadian Traveler Problem”.
In: J. of Comb. Opt. 34.2 (2017), 453–461. doi: 10.1007/s10878-016-0079-8.

[27] W. J. Savitch. “Relationships Between Nondeterministic and Deterministic Tape Complexi-
ties”. In: J. Comput. Syst. Sci. (1970). doi: 10.1016/S0022-0000(70)80006-X.

[28] G. Peterson, J. Reif, and S. Azhar. “Lower Bounds for Multiplayer Noncooperative Games
of Incomplete Information”. In: Comput & Math. Appl. 41.7-8 (2001), pp. 957–992. doi: 10.
1016/S0898-1221(00)00333-3.

[29] J. Yu and S. M. LaValle. “Multi-agent Path Planning and Network Flow”. In: Algorithmic
Foundations of Robotics X. 2013, pp. 157–173.

[30] P. Surynek. “An Optimization Variant of Multi-Robot Path Planning is Intractable”. In: Proc.
of AAAI. 2010, 1261–1263.

[31] C. Amato, G. Chowdhary, A. Geramifard, N. K. Üre, and M. J. Kochenderfer. “Decentralized
Control of Partially Observable Markov Decision Processes”. In: CDC. 2013, pp. 2398–2405.
doi: 10.1109/CDC.2013.6760239.

https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1109/TRO.2012.2190178
https://doi.org/10.1109/TRO.2012.2190178
https://doi.org/10.1007/s10458-020-09468-5
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1109/ISTCS.1993.253468
https://doi.org/10.1109/ROBOT.2000.844100
https://doi.org/10.1145/375735.375806
https://doi.org/10.1007/s10878-012-9503-x
https://doi.org/10.1007/s10878-016-0079-8
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1109/CDC.2013.6760239

14

[32] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M. Y. Vardi. “Strategy logic with im-
perfect information”. In: LICS. 2017, pp. 1–12. doi: 10.1109/LICS.2017.8005136. eprint:
1805.12592.

[33] A. Bar-Noy and B. Schieber. “The Canadian Traveller Problem.” In: SODA. Vol. 91. 1991,
pp. 261–270.

[34] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. “Robotic exploration as graph construction”.
In: IEEE Transactions on Robotics and Automation 7.6 (1991), pp. 859–865. doi: 10.1109/
70.105395.

[35] S. Koenig, C. Tovey, and W. Halliburton. “Greedy Mapping of Terrain”. In: Proc. of ICRA.
Vol. 4. 2001, 3594–3599 vol.4. doi: 10.1109/ROBOT.2001.933175.

[36] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. “Alternation”. In: J. of ACM 28.1 (1981),
pp. 114–133. doi: 10.1145/322234.322243.

[37] T. Charrier, A. Queffelec, O. Sankur, and F. Schwarzentruber. “Reachability and Coverage
Planning for Connected Agents”. In: Proc. of IJCAI. 2019, pp. 144–150. doi: 10.24963/
ijcai.2019/21.

[38] D. Lichtenstein. “Planar Formulae and Their Uses”. In: SIAM Journal on Computing (SICOMP)
11 (1982), pp. 329–343. doi: 10.1137/0211025.

[39] H. Ma, T. K. S. Kumar, and S. Koenig. “Multi-Agent Path Finding with Delay Probabilities”.
In: Proc. of AAAI. 2017, 3605–3612.

[40] D. Atzmon, A. Felner, R. Stern, G. Wagner, R. Barták, and N.-F. Zhou. “k-Robust Multi-
Agent Path Finding”. In: International Symposium on Combinatorial Search (SoCS). 2017,
pp. 157–158.

[41] D. Atzmon, R. Stern, A. Felner, N. R. Sturtevant, and S. Koenig. “Probabilistic Robust
Multi-Agent Path Finding”. In: Proc. of ICAPS. 2020, pp. 29–37.

[42] M. Ivanová and P. Surynek. “Adversarial Cooperative Path-Finding: Complexity and Algo-
rithms”. In: ICTAI. 2014, pp. 75–82. doi: 10.1109/ICTAI.2014.22.

[43] A. Murano, G. Perelli, and S. Rubin. “Multi-agent Path Planning in Known Dynamic Envi-
ronments”. In: PRIMA. 2015. doi: 10.1007/978-3-319-25524-8_14.

[44] J. Miura and Y. Shirai. “Probabilistic Uncertainty Modeling of Obstacle Motion for Robot
Motion Planning”. In: Journal of Robotics and Mechatronics 14 (2002), pp. 349–356.

[45] N. C. Griswold and J. Eem. “Control for mobile robots in the presence of moving objects”.
In: IEEE Trans. on Rob. and Autom. 6.2 (1990), pp. 263–268. doi: 10.1109/70.54744.

[46] Yun Seok Nam, Bum Hee Lee, and Nak Yong Ko. “A View-Time Based Potential Field
Method for Moving Obstacle Avoidance”. In: Proc. of SICE. 1995, pp. 1463–1468. doi: 10.
1109/SICE.1995.526730.

[47] A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta. “Robust multi-robot optimal path planning
with temporal logic constraints”. In: Proc. of ICRA. 2012, pp. 4693–4698. doi: 10.1109/ICRA.
2012.6224792.

[48] S. A. Miller, Z. A. Harris, and E. K. P. Chong. “Coordinated Guidance of Autonomous UAVs
via Nominal Belief-State Optimization”. In: ACC. 2009, pp. 2811–2818. doi: 10.1109/ACC.
2009.5159963.

[49] A. Stentz. “Optimal and Efficient Path Planning for Unknown and Dynamic Environments”.
In: IJRA 10 (Feb. 1993).

[50] D. Ferguson, N. Kalra, and A. Stentz. “Replanning with RRTs”. In: Proc. of ICRA. 2006,
pp. 1243–1248. doi: 10.1109/ROBOT.2006.1641879.

[51] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. “Anytime Dynamic A*: An
Anytime, Replanning Algorithm”. In: Proc. of ICAPS. 2005, 262–271.

[52] C. Ferrari, E. Pagello, J. Ota, and T. Arai. “Multirobot motion coordination in space and
time”. In: Robotics and Autonomous Systems 25.3-4 (1998), pp. 219–229. doi: 10.1016/S0921-
8890(98)00051-7.

[53] A. Bry and N. Roy. “Rapidly-exploring Random Belief Trees for motion planning under
uncertainty”. In: Proc. of ICRA (2011), pp. 723–730.

[54] J. P. Gonzalez and A. Stentz. “Planning with uncertainty in position an optimal and efficient
planner”. In: IROS. 2005, pp. 2435–2442. doi: 10.1109/IROS.2005.1545048.

https://doi.org/10.1109/LICS.2017.8005136
1805.12592
https://doi.org/10.1109/70.105395
https://doi.org/10.1109/70.105395
https://doi.org/10.1109/ROBOT.2001.933175
https://doi.org/10.1145/322234.322243
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.1137/0211025
https://doi.org/10.1109/ICTAI.2014.22
https://doi.org/10.1007/978-3-319-25524-8_14
https://doi.org/10.1109/70.54744
https://doi.org/10.1109/SICE.1995.526730
https://doi.org/10.1109/SICE.1995.526730
https://doi.org/10.1109/ICRA.2012.6224792
https://doi.org/10.1109/ICRA.2012.6224792
https://doi.org/10.1109/ACC.2009.5159963
https://doi.org/10.1109/ACC.2009.5159963
https://doi.org/10.1109/ROBOT.2006.1641879
https://doi.org/10.1016/S0921-8890(98)00051-7
https://doi.org/10.1016/S0921-8890(98)00051-7
https://doi.org/10.1109/IROS.2005.1545048

15

[55] S. Prentice and N. Roy. “The Belief Roadmap: Efficient Planning in Belief Space by Factoring
the Covariance”. In: IJRR 28 (Oct. 2009), pp. 1448–1465. doi: 10.1177/0278364909341659.

[56] B. Nebel, T. Bolander, T. Engesser, and R. Mattmüller. “Implicitly Coordinated Multi-Agent
Path Finding under Destination Uncertainty: Success Guarantees and Computational Com-
plexity”. In: JAIR 64.1 (2019), 497–527. issn: 1076-9757. doi: 10.1613/jair.1.11376.

[57] K.-H. C. Wang and A. Botea. “Tractable Multi-Agent Path Planning on Grid Maps”. In:
Proc. of IJCAI. 2009, pp. 1870–1875.

[58] J. Banfi, N. Basilico, and F. Amigoni. “Intractability of Time-Optimal Multirobot Path Plan-
ning on 2D Grid Graphs with Holes”. In: RA-L 2.4 (2017), pp. 1941–1947. doi: 10.1109/LRA.
2017.2715406.

https://doi.org/10.1177/0278364909341659
https://doi.org/10.1613/jair.1.11376
https://doi.org/10.1109/LRA.2017.2715406
https://doi.org/10.1109/LRA.2017.2715406

16

Appendix A. Complements on the Imperfect Information Setting

We present here a formal modeling of the imperfect information in our setting.
In our setting, at any time, an agent observes all movement edges adjacent (in- and out-

coming edges) to the vertex v it occupies. Moreover, they observe the presence or absence
of a communication edge between (v, v′) if v′ is occupied by another agent with which there
is a direct or indirect communication (via other agents). Intuitively, during an execution,
at each step, each agent updates their knowledge about the graph with these observations
they receive. Moreover, they share all their knowledge with all agents with which they are
connected at each step.

Given graph G = 〈V,Em, Ec〉, let us define the direct observation obsi(c) of agent i at a
configuration c to be the set:

{omci,v′ | (ci, v
′) ∈ Em} ∪ {o¬mci,v′ | (ci, v

′) /∈ Em} (A.1)

∪ {omv′,ci | (v
′, ci) ∈ Em} ∪ {o¬mv′,ci | (v

′, ci) /∈ Em} (A.2)
∪ {occi,cj | j is an agent and (ci, cj) ∈ Ec} (A.3)

∪ {o¬cci,cj | j is an agent connected to i in c, (ci, cj) /∈ Ec} (A.4)

where omu,v, o¬mu,v , ocu,v and o¬cu,v are abstract terms that represent the observations. In the def-
inition of obsi(c), points (1) and (2) mean that agent i directly observes the set of movement
edges adjacent to her current position. Point (3) means that agent i observes a communi-
cation edge when she can communicate with another agent j. Point (4) means that agent i
observes the absence of a communication edge when she sees that she can not communicate
directly with another agent j but can communicate with j via multi-hop. That is, we say
that j is an agent connected to i in c when there is a communication path ci1 , ci2 , . . . , cik
with i1 = i and ik = j.

Let O denote the set of all observations. We define the knowledge of an agent as a subset
of O. We define the initial knowledge for the pair (G1, G2) as follows:

K0(G1, G2) = {omu,v | (u, v) ∈ Em1 } ∪ {ocu,v | (u, v) ∈ Ec1}∪
{o¬mu,v | (u, v) /∈ Em2 } ∪ {o¬cu,v | (u, v) /∈ Ec2}
where Gi = 〈V,Emi , Eci 〉.

This corresponds to the a priori knowledge on the graph all agents have before making
any observation.

During the execution, agents update their knowledge at each step, upon visiting a new
configuration. Formally, the knowledge ki((Kj)1≤j≤n, π)

G of agent i after observing execu-
tion π in actual graph G, where each agent j starts with initial knowledge Kj , is defined by
induction on π:

• ki((Kj)1≤j≤n, ε)
G = Ki

• ki((Kj)1≤j≤n, πc)
G is the union of:

ki((Kj)1≤j≤n, π)
G; (a)

obsi(c); (b)⋃
j connected to i in c

(kj((Kj)1≤j≤n, π)
G ∪ obsj(c). (c)

Intuitively, the knowledge of an agent is composed of (a) her knowledge collected until
now, (b) her current observation, and (c) the knowledge of the agents she is connected to
and their current observation.

When the agents start with an initial knowledge (G1, G2) that is clear from the context,
we will omit the tuple (Kj)1≤j≤n and simply write ki(π)G.

17

Note that during a connected execution, all agents have an identical knowledge at all
times. We thus omit the subscript i, and replace the tuple of initial knowledge sets by a
single set K and write k(K,π)G rather than ki((Kj)1≤j≤n, π)

G.

Appendix B. Proofs of Section 4

Unbounded Case. We formalize the intuition presented in the proof sketch of Theorem 3.
We define the following recursive property: P (G,G, c, ct) holds for graphs G,G, and config-
urations c, ct if either G is not (cs, ct)-c-admissible, or there exists a connected execution π
from c to ct in G such that for all G with G ⊆ G ⊆ G, writing K0 for the initial knowledge
for the pair (G,G), there exists 0 ≤ i0 ≤ |π| with k(K0, c)

G = k(K0, π[0..i0 − 1])G, and
either π[i0] = ct or (k(K0, c)

G (K = k(K0, π[0..i0])
G and P (GK , G

K
, π[i0], c

t)).
The following two lemmas prove Theorem 3.

Lemma 4. An instance I = (G1, G2, c
s, ct,∞) is c-positive if, and only if P (G1, G2, c

s, ct).

Proof. We prove the following more general property by induction on the number of edges
present in G2 and absent in G1, that is, |Em2 |− |Em1 |+ |Ec2|− |Ec1|: For all graphs G1 ⊆ G ⊆
G2, and configurations c, if the instance (G,G, c, ct,∞) is c-positive then P (G,G, c, ct).

If G = G then either the instance is not c-admissible and, then, P (G,G, c, ct) holds, or
there is a connected execution in G from c to ct in which case the property holds as well.

Assume G (G, and consider σ a witness strategy for the instance (G,G, c, ct,∞). Con-
sider a graph G ⊆ G ⊆ G. If the execution π induced by σ does not reveal any new
observation in G, then it must end in ct and P (G,G, c, ct) holds. Otherwise, let i0 be the
first step where a new observation is made. Since σ is a witness strategy, it is a witness for
the instance (GK , G

K
, π[i0], c

t,∞) as well whereK = k(π[0..i0])
G. Since G

K
and GK have a

smaller number of differences thanG andG, we conclude by induction that P (G,G, π[i0], ct).
Thus, P (G,G, c, ct) holds.

Let us now show that all instances that satisfy the property are c-positive. Assume
P (G1, G2, c

s, ct) holds. We define the joint strategy σ on all graphs G
K

and executions π
in G

K
, such that P (GK , G

K
, last(π), ct), by induction on the length of π.

Assume σ is constructed for an execution π and knowledge K. If G
K

is not c-admissible,
then any strategy is a witness strategy so σ can be defined arbitrarily. Otherwise, consider
the connected execution π′ given by P (GK , G

K
, last(π), ct). We define σ so that agents

follow π′ until index i0, in which case either π′[i0] = ct or P (GK
′
, G

K′

, ππ′[1..i0], c
t). �

Lemma 5. P (G1, G2, c
s, ct) can be checked in polynomial space.

Proof. The existence of a connected execution can be checked in polynomial space by
Theorem 2. However, the size of such an execution can be exponential, and checking
P (G1, G2, c

s, ct) requires iterating over the step of the execution. We thus need to com-
bine the enumeration of the connected execution as we check P recursively.

The procedure to check P (G,G
K
, c, ct) works as follows. We non-deterministically guess

a connected execution step by step, from c to ct using the PSPACE algorithm of Theorem 2.
We thus only keep the last configuration in memory, a binary integer counter to bound the
length of the execution (bounded by the number of configurations, thus an exponential),
and the current graph G

K
. If there is no such execution, we accept. Otherwise, at each step,

say, after having visited execution π and generated next configuration c′ we enumerate all
possible sets K ′ = k(K0, πc

′)G, where K0 is the initial knowledge for the pair (G1, G2). This
can be done by enumerating all subsets of movement edges adjacent to c′, present in G

K

but not in GK , and similarly communication edges revealed by c′. Note that k(K0, πc
′)G

18

sz vz

uz

u¬z

uz tz

sz

s¬z

vz

v¬z

lz

rz

r¬z

l¬z

t¬z

tz

. . .
3(i− 1) + 1

. . .
3(i− 1) + 2

. . .
3(i− 1) + 2

. . .
3(n− i) + 2

∀z?
∃z

∀z
?
∃z

. . .
3(n− i)− 1

. . .
3(n− i)− 1

?

?

?

?

(a) Variable gadget for variable z. Edges between vz and
l¬z , and between vz and rz are both certain if z is existen-
tial and both uncertain if z is universal.

Certain Movement edge
? Uncertain Movement edge
∀z?
∃z

Movement edge that is certain if z is
existential and uncertain if z is univer-
sal

(vz , tγ) ∈ Em1 when z is an occurrence in γ
(v¬z , tγ) ∈ Em1 when ¬z is an occurrence in γ

sγ vγ

rγ

lγ

tγ. . .
3(n− 1) + 3 ?

?

(b) Clause gadget γ.

Figure 6. Gadgets for the reduction from QBF to the bounded reachability problem in
the complete connectivity case.

only depends on k(K0, π)
G and c′ which the algorithm already has. There is an exponential

number of possibilities, and these can be enumerated in polynomial space. For each case,
we check recursively whether P (GK

′
, G

K′

, c′, ct). Since the knowledge can increase only a
polynomial number of times (since the knowledge can only increase when an edge is added
or removed), the depth of the recursive calls is polynomial. Thus, overall, the procedure
uses polynomial space. �

Bounded Case.

Proof of Lemma 1. First, observe that if the existential player has a strategy σ in the alter-
nating algorithm, then the instance is c-positive. In fact, for any graphG withG1 ⊆ G ⊆ G2,
consider strategy τ of the universal player which makes choices according to G. Since this
σ wins against τ , either the graph is not admissible or the agents successfully arrive to
the target configuration. Conversely, assume that the instance is c-positive, that is, for all
choices of an admissible graph G, the agents arrive at a target configuration under some
joint strategy σ. We apply σ in the alternating algorithm. Consider any strategy τ of the
universal player, and observe the execution induced by (σ, τ). If the graph induced by τ
is revealed not to be admissible, then the existential player wins. Otherwise, consider any
admissible graph G with G1 ⊆ G ⊆ G2 compatible with the edges revealed during the ex-
ecution of (σ, τ). Since σ is winning in the original game when the underlying graph is G,
the existential player also wins. �

Proof of Lemma 2. To build a PSPACE algorithm, we perform a DFS of the computation
tree T in a succinct manner. Consider the tree T ′, built from T , where we only keep
vertices in which the universal player makes a decision, while paths along which only the
existential player moves are shortcut into single edges. The depth of this tree is polynomial
by definition.

The idea is to run a DFS on T ′ to check whether the machine accepts. This can be done
in polynomial space provided that the children of all vertices can be computed in polynomial
space. Successors of an existential configuration c in T ′ are computed as follows: we generate
on-the-fly all possible configurations c′ and test whether c′ is reachable from c in the original
alternating machine by using a PSPACE oracle. The DFS that runs in PSPACE augmented
with this PSPACE oracle gives a polynomial space procedure. �

Proof of Theorem 5. The lower bound is proven by reduction from TQBF.

19

Consider a QBF ϕ of the form ∀z1∃z2 . . . Qnznψ where ψ is a Boolean formula in con-
junctive normal form with n variables and m clauses.

In the reduction, we call a movement path, from vertex v to vertex u, a chain of vertices
linking v to u by movement edges. In addition, we denote an occurrence of a positive (resp.
negative) literal of a variable z, by z (resp. ¬z)

Let us describe the construction of the graph G1 depicted in Figure 6. For each variable
z, we create a gadget depicted in Figure 6a. Formally, for all variables z, the i-th quantified
variable, we create the following vertices: sz, sz, s¬z, vz, vz, v¬z, uz, uz, u¬z, tz, tz, t¬z,
lz, l¬z, rz and r¬z. We create the following movement paths: between sz and vz of length
3(i−1)+1, between sz (resp. s¬z) and vz (resp. v¬z) of length 3(i−1)+2, between uz and
tz of length 3(n− i) + 2, and between uz (resp. u¬z) and tz (resp. t¬z) of length 3(n− i)-1.
Then, we add the following movement edges: from uz (resp. u¬z) to lz (resp. l¬z) and rz
(resp. r¬z), from uz to rz and l¬z. Finally, if the variable z is an existential variable then
we add movement edges from vz to rz and l¬z.

We create clause gadgets as depicted in Figure 6b. Formally, for all clauses γ, we create
the following vertices: sγ , vγ , lγ , rγ and tγ . We create a movement path of length 3(n−1)+3
from sγ to vγ . Finally, we create movement edges from vγ to lγ and rγ .

Note that G2 contains G1 and for all universal variables, it contains additionally the
following movement edges: from vz to rz and l¬z, from uz to rz and lz, from u¬z to r¬z
and l¬z, and from tγ to lγ and rγ .

We define the initial configuration and target configuration as follows:

cs = 〈sγ1 , . . . , sγm , sz1 , . . . , szn , sz1 , . . . , sz1 , . . . , s¬zn〉;
ct = 〈tγ1 , . . . , tγm , tz1 , . . . , tzn , tz1 , . . . , tz1 , . . . , t¬zn〉.

We show that ϕ is true iff (G1, G2, c
s, ct, k) is c-positive with k = 3(n− 1) + 5.

For simplicity, we classify the agents as follows.

• A Variable agent is an agent starting at a vertex sz;
• a Clause agent is an agent starting at a vertex sγ ;
• a Positive (resp. negative) occurrence agent is an agent starting at sz (resp. s¬z).

(⇒) Assume that the QBF ϕ is true. There exists a collection of Skolem functions A such
that for each existential variable zi (where i is even), and an assignment ν to universally
quantified variables in z1, z3, . . . , zi−1, Azi(ν) ∈ {>,⊥} is the value assigned to zi such
that ϕ is true under assignment ν augmented with the values of A. We construct the
following strategy σ, which guarantees that ct is reached in k steps from cs.

Intuitively, the lengths of the initial movement paths are designed so that agents starting
at szi arrive at vzi in the order of their indices. For an existential variable agent, the choice
of the successor from vzi determines the value of zi; while for a universal variable agent, the
choice is made by the environment. More precisely, if the agent moves to rzi , then zi is set
to true, if she moves to l¬zi it is set to false.

Formally, all agents start by moving to their respective v vertices (e.g. A clause agent at
sγ moves to vγ). They arrive at these vertices at different moments due to the sizes of their
movement paths. An existential variable agent arrives at vertex vzi at time 3(i− 1)+ 1. At
this point, all universal variable agents among z1, z3, . . . , zi−1 have arrived to their respective
vertices vzj , thus revealing the values of these variables. Let ν be this assignment. If
Azi(ν) = >, the agent moves to rzi , and otherwise, to l¬zi .

When a universal variable agent arrives to vzi at time 3(i − 1) + 1, she follows the only
edge dictated by the environment, either to rzi or to l¬zi . This assigns > to the variable zi
in the former case, and ⊥ in the latter case. Observe that if the graph is admissible, then
there must exist a path from source to target for each agent; this means that one of these
edges must be present.

20

Consider a positive (resp. negative) occurrence agent associated to a clause γ. This agent
arrives to vzi (resp. v¬zi) at time 3(i− 1) + 2. Observe that the variable agent has already
determined the value of zi in the previous step.
• if zi is assigned > (resp. ⊥) then the agent moves to tγ , observe which edges are

available at tγ , and immediately comes back to vzi (resp. v¬zi). Now, the edge between rzi
(resp. l¬zi) and uzi (resp. u¬zi) has been observed by agent zi; so if this edge is present,
she moves to rzi and uzi ; and if not, then the edge from lzi to uzi must be available, and
she arrives to tzi (resp. t¬zi) at time k.
• if zi is assigned ⊥ (resp. >) then she does not visit tγ , but moves to lzi (resp. l¬zi).

If the edge between lzi (resp. l¬zi) and uzi (resp. u¬zi) is available, she moves to tzi (resp.
t¬zi), otherwise she moves back and reach tzi (resp. t¬zi) at time k, through rzi (resp.
r¬zi).

It remains to argue that clause agents can reach their target vertices within k steps.
Since ϕ is true, by the definition of A, whatever the choice for the universal variables, some
literal ` of each clause γ is assigned to true. Therefore, the positive or negative occurrence
agent corresponding to this literal visits tγ , thus revealing the edges available from tγ to
rγ and lγ . Note that at least one of these edges must be available for the graph to be
admissible. Thus, a clause agent arriving to vγ at time 3(n− 1)+ 3 can follow the available
path to reach tγ exactly at time k.

(⇐) Let σ be a witness joint strategy. Following σ, each clause agent c must know the
available edges in the rest of their paths at time 3(n − 1) + 3 since otherwise they cannot
ensure reaching tγ at time k. Thus, for each clause γ, the vertex tγ is visited by some
occurrence agent under strategy σ. Furthermore, an occurrence agent z (resp. ¬z) can visit
vertex tγ and still make it to tz (resp. t¬z) in time iff the associated variable agent has
observed the presence of the edge between uz (resp. u¬z) and rz (resp. l¬z) beforehand.
In fact, otherwise, if the occurrence agent makes a wrong guess between lz and rz, they
will not arrive to tz (resp. t¬z) at time k. Hence, the joint strategy of the variable agents
determines an assignment function which satisfies ϕ.

�

Appendix C. Proofs of Section 5

Unbounded Case. Given ϕ, let (G1, G2, c
s, ct,∞) denote the graph built in the proof sketch

of Theorem 6.

Lemma 6. DQBF ϕ holds if and only if (G1, G2, c
s, ct,∞) is positive.

Proof. We denote the agents as (1) an agent that starts at sz as the existential agent z if z
is an existential variable; the agent is called universal if z is universal; (2) the verification
agent is the one starting at sγ ; (3) the clause agents γi start at sγi ; (4) the observation
agents O start at sO.

(⇒) Suppose the DQBF ϕ holds, and let A be the collection of Skolem functions. We
build the following joint strategy. The environment chooses the truth values of universal
variables z by deleting some edges vz to >z or vz to ⊥z. If the environment deletes the edge
vz to >z, the agent is forced to pass in ⊥z, thus the variable z is considered to be false. If
the environment deletes the edge vz to ⊥z, the agent is forced to pass in >z, thus variable z
is considered to be true. If the environment deletes neither edge, then we define the strategy
for agent ay to choose to pass in y, making y true by default.

The rest of the strategy is defined as follows. At the first step, each variable agent for
variable z moves to vz, and each observation agent for the pair (x, y) moves to vy, and thus
observes the value of universal variable y. At the second step, existential agents remain
in place, while observation agents move to vO, thus sharing their observations with the

21

corresponding existential agents. Thus, at this point, each existential agent corresponding
to variable x knows the values of all universal variables y ∈ Ox. Then, agent z moves to >z
if Az(ν) = 1 and to ⊥z otherwise, where ν is the valuation of the variables in Oz.

All clause agents move from si to γi and remain at γi for two steps so that all existential
and universal variable agents z are at >z or ⊥z. The verification moves to vγ and also
waits for two steps. Since each clause is satisfied by the currently read valuation, each
clause agent γi communicates at least with one existential or universal agent. Thus, the
verification agent communicates with all clause agents via these variable agents. Since the
clause agents communicate with the verification agent at this moment, the latter can see
which edges are present in the clause gadget, and can continue go to tγ without getting
stuck.

(⇐) Conversely, suppose there is a witness joint strategy, in particular ensuring that
the verification agent goes to tz. This means that the agent must have received all the
information about the topology around vertices γ1, . . . , γk. But this is only possible if the
agents have occupied a configuration in which the verification agent is at vγ , all clause agents
are at γi such that for each clause γi, there is at least one variable agent z at >z if z ∈ γi
and at ⊥z if ¬z ∈ γi. Thus, ϕ is a positive instance of TDQBF. �

Bounded Case.

Proof of Theorem 7. The upper bound when the bound k is given in unary is obtained by
the following non-deterministic algorithm:

(1) Guess a strategy σi for each agent i, up to executions of length ≤ k. Such a strategy
can be represented as a tree of depth k, and thus has size exponential in k.

(2) Check that σi is uniform for agent i.
(3) For all admissible graphs G such that G1 ⊆ G ⊆ G2, execute the joint strategy

σ and check that the outcome execution from the initial configuration leads to the target
configuration.

The obtained algorithm is non-deterministic and runs in exponential time. Note that
the encoding of k is not relevant since for k ≥ 2|V | there is always a solution following the
unbounded case.

We now prove the NEXPTIME-hardness result by reduction from TDQBF. Given an
instance of TDQBF ∀y1, . . . , yn∃x1(Ox1

) . . . ∃xn(Oxn
) ψ, we build an instance of bounded

decentralized reachability (G1, G2, c
s, ct, k). We denote the number of clauses by m.

We construct the graph G1 as follows:
For each variable z, we create a gadget, as depicted in Figure 7a. We create the vertices

sz, vz, >z, ⊥z and tz, and we create a movement path of length 3m+ 1 from tz to >z and
⊥z. Then, if the variable z is universal, we create a movement path of length 3×n2+1 from
sz to vz. If the variable z is xi, that is the i-th existential variable, we build a movement
path of length 3×n2−2|Oz|+1 from sz to vz as follows. We first build a movement path of
length 3× (in− |Oz|). We then extend this movement by a vertex ρy for each y ∈ Oz. We
extend our path from the last such vertex ρy to vz by a movement path of length 3×(n2−in).
Furthermore, we add a bidirectional edge between ρy and vy.

We create the clause gadget, depicted in Figure 7b, composed of the vertices sγ , vγ , tγ
and for all clauses γi, the vertices uγi , lγi , rγi , si, ci and ti. We create a movement path
of length 3 × n2 + 2 between sγ and vγ and between all si and γi. For all γi, we create
movement edges from uγi to lγi and to rγi , from the vertex γi to uγi+1 , or tγ if i = m. In
addition, we add a movement edge between vγ and uγ1 . For all γi, we add a movement path
of length 3m + 1 between vertices γi and ti. Vertex γi communicates with >z iff z ∈ γi,
and with ⊥z iff ¬z ∈ γi. Moreover, vertex vγ communicates with all >z and ⊥z for all
variables z.

22

sz vz

>z

⊥z
tz. . .

3× n2 − 2|Oz |+ 1
∀z

?
∃z
∀z?
∃z

. . .
3m+ 1

. . .

3m+ 1

(a) Variable gadget for variable z. Edges between vz and >z , and be-
tween vz and ⊥z are both certain if z is existential and both uncertain
if z is universal.

sγ vγ uc1

lγ1

rγ1

γ1

s1

t1

?

?

...

3×
n
2
+

2

...

3
m

+
1

. . .
3×n2 + 2

. . . uck

lγk

rγk

γk

sk

tk

?

?

...

3×
n
2
+

2

...

3
m

+
1

tγ

(b) Clauses gadget.
Certain Undirected Movement edge

? Uncertain Undirected Movement edge
∀z?
∃z

Undirected Movement edge that is certain
if z is existential and uncertain if z is uni-
versal

(>z , γi) ∈ Ec1 when z appears in γi
(⊥z , γi) ∈ Ec1 when ¬z appears in γi
(>z , vγ) ∈ Ec1, (⊥z , vγ) ∈ Ec1

Figure 7. Gadgets for the reduction from DQBF to the bounded decentralized reacha-
bility problem.

Graph G2 contains G1 and for all universal variables z, we add movement edges: from
vz to >z and to ⊥z, and for all clauses γi, we add movement edges from the vertex γi to
lγi and to rγi .

We define the initial and target configurations as cs = 〈sγ , sγ1 , . . . , sγm , sz1 , . . . , szn〉 and
ct = 〈tγ , tγ1 , . . . , tγm , tz1 , . . . , tzn〉.

We show that ϕ is a positive instance of TDQBF iff (G1, G2, c
s, ct, k) is positive with

k = 3 × n2 + 2 + 3m + 1. We refer to an agent that starts at sz as the existential agent z
if z is an existential variable; the agent is called universal if z is universal. The verification
agent is the agent that starts at sγ and the clause agents γi start at sγi .

(⇒) Suppose the DQBF holds, and let A be an assignment function. We build a joint
strategy. The environment chooses the truth values of variables z by deleting some edges
vz to >z or vz to ⊥z. If the environment deletes the edge vz to >z, it enforces the agent
to pass in ⊥z, thus the variable z is considered to be false. If the environment deletes the
edge vz to ⊥z, it enforces the agent to pass in >z, thus variable z is considered to be true.
If the environment deletes neither edge, then we define the strategy for agent ay to choose
to pass in y, making y true by default.

The strategy is defined as follows. Each existential agent z follows the movement path
of length 3 × n2 − 2|Oz| + 1 to vz, but whenever they have vertex vy as a neighbor, they
visit vy, come back, and continue their paths. This happens exactly Oz times, so at time
3×n2 +1, the existential agent is at uz. Note that along this path the agent has visited all
vertices vz′ with z′ ∈ Oz, thus knows which edge among (vz′ ,>z′) and (vz′ ,⊥z′) is present.
Thus, upon arriving to vz, the agent has the knowledge of the valuation for all variables
in Oz. Observe also that by construction of the movement paths between sz and vz, the

23

agents never meet in this phase of the execution. Agent z moves to >z if Az(ν) = 1 and
to ⊥z otherwise, where ν is the valuation of the variables in Oz.

All clause agents reach γi at time 3× n2 +2. Moreover, the verification agent is at vγ at
this point, and all existential and universal variable agents z are at >z or ⊥z. Recall that all
these vertices communicate. Since each clause is satisfied by the currently read valuation,
each clause agent γi communicates at least with one existential or universal agent. Thus,
the verification agent communicates with all clause agents via these variable agents. Since
the clause agents can see which edges are present in the clause gadget, the verification agent
has now full information about this gadget, and can continue their path until tγ without
backtracking, thus in total time 3× n2 + 2 + 3m+ 1.

(⇐) Conversely, suppose there is a joint strategy enforcing that the verification agent goes
to tγ in k steps. Thus, it means that she must have received all the information about the
surroundings of the vertices γ1, . . . , γk, as she has no time to backtrack from a wrong choice.
This information can only be sent to the verification agent from the clause agents through
the variable agents after 3× n2 +2 steps. The variable agents representing the assignments
are connecting (i.e. satisfying) all clauses. Indeed, for all γi, there is one variable agent z
at >z if z ∈ γi and at ⊥z if ¬z ∈ γi. Thus, the DQBF is a positive instance of TDQBF. �

	1. Introduction
	2. Preliminaries
	3. Our framework
	3.1. Modeling Imperfect Information
	3.2. Decision Problems

	4. Connected Reachability
	4.1. Unbounded Case
	4.2. Bounded Case

	5. Decentralized Reachability
	5.1. Unbounded Case
	5.2. Bounded Case

	6. Discussion
	References
	References

	Appendix A. Complements on the Imperfect Information Setting
	Appendix B. Proofs of Section 4
	Appendix C. Proofs of Section 5

