
Connected Multi-Agent Path Finding: Generation
and Visualization

Arthur Queffelec1 Ocan Sankur2

François Schwarzentruber1
1Univ Rennes, CNRS, IRISA

2Univ Rennes, Inria, CNRS, IRISA
firstname.lastname@irisa.fr

May 27, 2021

Abstract

We present a generic tool to visualize missions of the Connected Multi-Agent
Path Finding (CMAPF) problem. This problem is a variant of MAPF which re-
quires a group of agents to navigate from an initial configuration to a goal config-
uration while maintaining connection. The user can create an instance of CMAPF
and can play the generated plan. Any algorithm for CMAPF can be plugged into
the tool.

1 Introduction
In many applications (automated farming, search and rescue, etc.), unmanned au-
tonomous vehicles (UAVs) have to stay connected at all time to share information.
Introduced in [6] and extensively studied in [13, 3, 4], Connected Multi-Agent Path
Finding (CMAPF) is the problem of generating such missions.

MAPF, from which CMAPF originated, asks for collision-free paths for a group
of agents. See [14] for a comprehensive survey. However, from an algorithmic point
of view, CMAPF is intrinsically harder than MAPF. It can be intuitively explained by
the fact that a collision constraint is local (only concerns two agents) while the con-
nectivity is global (it concerns the whole group of agents). While finding an arbitrary
execution avoiding collisions is in PTIME [15], finding an arbitrary execution main-
taining the connectivity is PSPACE-complete [13]. Optimisation problems for MAPF
and CMAPF are NP-complete (see [4]). Algorithms have been developed to solve
CMAPF [6, 13, 10].

As CMAPF has applications and is challenging, new algorithms will be developed.
Thus, we need to visualize CMAPF instances and plans. Indeed, Visualization will
help to understanding the generated plans, and thus to improve algorithms. It will
also help to teach and explain these algorithms. A tool for the visualization of MAPF
plans was developed [7]. However, to the best of our knowledge, no tool exists for

1



the visualization of CMAPF missions. The closest tool to our need was created in
2018 [1], in order to generate and visualize connected plan of coverage missions, where
all locations of the graph must be visited by the agents. The latter work converts an
instance of connected coverage planning into a classical planning instance. Coverage
planning is close to CMAPF, as shown in [10]. The scalability was very limited and
the collisions were not taken into account. Also the edition of maps was not possible.

UAVs
Move adjacency
Communication adjacency
Active communications

Figure 1: Example of a mission execution.

The goal of our tool1 is to provide a platform for current and future algorithmic
approach to visualize connected missions. It is worth noting that the connectivity con-
straints add a new layer of complexity to the missions compared to MAPF which render
mission less comprehensible. The user can choose a 2D map on which to synthesize a
connected cooperative plan. She can select the starting configuration of the agents and
the goal configuration, the radius of communication and whether collisions are allowed
or not. Then, the back-end algorithm generates a mission for the cooperation of agents.

The tool is provided with a simple algorithm to solve CMAPF. The structure of
the algorithm is based on CBS [12] with positive constraints to deal with the particular
challenges of CMAPF. Indeed, CBS deals with collision conflicts between two agents
by enforcing one of the agents to move away from the location of the collision. In
our algorithm, connectivity conflicts correspond to disconnected configurations, that is,
configurations where the agents do not form a connected subgraph. Resolving such
a conflict is harder: a connectivity conflict can involve multiple agents and a single

1https://github.com/francoisschwarzentruber/cmapf-gui

2

https://github.com/francoisschwarzentruber/cmapf-gui


disconnected agent may not be the source of the conflict.
Figure 1 shows a simple execution of 3-steps plan in a graph: solid lines represent

elementary possible moves between two vertices; a dashed line between two vertices
means that communication is possible between them. At the first step, agent are at the
starting configuration. At the end, the agents reached their goal configuration. During
the execution, agents stay connected (dashed lines forming a connected subgraph).
Importantly, agents do not communicate while moving.

Outline. In Section 2, we explain the demonstration itself. Then, in Section 3
we describe the architecture of the tool. In Section 4, we describe our algorithm. We
conclude in Section 5.

2 Demonstration Outline

2.1 Choose an instance
The software starts by showing a map. The user can select another map. She can
also modify the radius of communication, that is the maximum distance between two
locations in which two agents could communicate. She can choose to add new agents.
Then, the user selects the starting locations of all the agents and the goal locations to
reach. As seen in Figure 2a, the user places the circles for the starting positions of the
agents and the flags for the ending positions.

2.2 Visualize generated plans
Once the mission is specified, the user can ask for the mission to be computed. The
algorithm computes the solution (or lack of solution) and informs the user. If a plan
exists, the user can scroll through the plan and see every step. In particular, the user
can go back and forth in the plan.

In Figure 2b, the path of each agent is displayed with a gray dashed line on the
ground and the connectivity between the agent at each step is shown by a blue link
between the inter-connected agents.

2.3 Create new maps
We wanted users to be able to create easily their own maps. That is why we decided
to represent maps as 2D black and white bitmaps (see Figure 3). That representation
makes the creation and edition of maps easy by means of any drawing software. Black
pixels are the obstacles while the white one are the nodes of the graph. The movement
is allowed between two adjacent white pixels. In the current version of the tool, the
user specifies a radius of communication.

3 Architecture of the Tool
In this section, we describe the architecture of our tool, as shown in Figure 4. Impor-
tantly, the visualizer is independent from the underlying algorithm that is used. So we

3



(a) Selection of an instance. The user can drag
and drop the starting and target locations of the
agents.

(b) Execution of a plan. Paths of agents are
shown, as well as the connectivity between
agents.

Figure 2: Screenshots of the tool.

Figure 3: A map is represented by a black and white bitmap.

4



any algorithm
for CMAPF

mapToGraph

Map

Back-end (server-side)

GUI

createInstance

planToAnim

Front-end (client-side)

map

plan

graph

Figure 4: Architecture of the tool

can easily plug any other algorithm.

Front-end The front-end of the tool displays the map (in which trees are obstacles)
and allows the user to construct an instance. When the user decides to compute an
execution, it generates an instance corresponding and send it to the back-end for pro-
cessing. The plan of the mission is then transformed into an animation that the user
can play. The front-end is written in TypeScript.

Back-end The back-end of the tool transforms the map to a pair of two graphs (move-
ment and communication). The graphs are described in the GraphML format (making
it easy to load the graphs e.g. in C++ via the library Boost or rapidxml. Then, it
contains an algorithm that takes the graphs and the start and goal configurations as an
input. Finally, the algorithm generates a plan or inform the lack of feasible plan. The
returned plan is a sequence of actions such that the connectivity is maintained.

4 Algorithm
Our visualization tool is supplied with an algorithm for solving CMAPF. We provide a
lightweight implementation in C++ (in comparison, the implementation given in [13]
requires Robot Operating System). Our algorithm is inspired by the concept of the
Conflict-Based Search (CBS) algorithm [12] which solves MAPF by finding an optimal
collision-free execution (without any connectivity constraints). CBS searches for an
execution using a decoupled approach, computing the path of each agent independently
and repairing any issue. This approach does not suffer directly from the state explosion
problem. Indeed, CBS is intuitively exponential in the number of collision and not in
the number of agents.

As in CBS, our algorithm Connected CBS (CCBS) is composed of two levels:
the high-level builds a constraint tree to search for a set of constraints; the low-level
computes path for single agents satisfying a given set of constraints. A constraint can

5



either be positive or negative and applies to an agent, a time-step and a location. Notice
that [12] only uses negative constraints, while we use both negative and positive ones.

High-Level The high-level of CCBS builds a constraint tree in order to find a set
of constraints which allows the low-level to generate a valid execution. CCBS starts
with a tree of a single constraint node containing no constraint. The low-level is used
to obtain an execution. If the execution is valid, we return it. Otherwise, we pick a
conflict and split it the following way.

• Collision Conflict: pick a pair of agents in collision, generate two negative con-
straints, each enforcing one of the agent away.

• Disconnection Conflict: pick an agent, for each possible position, generate a
positive constraint enforcing the agent at this location.

This process repairs all conflicts in a best-first search manner.

Low-Level We use the algorithm described in [9] to compute the constrained shortest
paths for individual agents with positive and negative constraint.

As CBS, in the case of a not satisfiable instance, our algorithm may not terminate.

5 Conclusion
The tool presented in this paper offers a framework for researchers to connect their
algorithms for CMAPF. For the moment, the communication type is limited to radius;
we aim at adding other communication types (e.g. line-of-sight). We plan to enrich
the graphical user interface so that the user may directly choose other algorithms (in
particular SB, DFS from [13]). A variant of CMAPF includes a base, that is, a specific
agent that can not move (see [1, 4, 10]. We also would like to enrich the graphical
user interface for capturing the notion of base, or more generally of agents that are not
allowed to move. In this line, we may also imagine agents will different abilities and
take the battery energy levels in the planning problem.

As said in the introduction CMAPF is a challenging problem. We aim at adapting
optimization coming from CBS for MAPF. For instance, for CBS, a popular and effi-
cient optimization considers cardinal conflicts [2], which are conflicts that can only be
solved by increasing the lengths of the paths of all involved agents. This concept led to
the integration of powerful heuristics in CBS [5, 8]. The adaptation of similar concepts
for connectivity is however nontrivial.

The CMAPF problem was extended to partially known environments in [11]. In
this setting the agents do not know exactly the environment in which it is moving and
have to discover it during their mission. Thus, when agents connect together they are
allowed to share their information. We also would like our tool to support partially
known environment. The user would be capable of observing the point of view of each
agent, its current knowledge and the knowledge gained through other agents.

6



References
[1] F. Bodin, T. Charrier, A. Queffelec, and F. Schwarzentruber. Generating plans

for cooperative connected uavs. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pages 5811–5813.
International Joint Conferences on Artificial Intelligence Organization, 7 2018.

[2] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and S. E. Shi-
mony. ICBS: improved conflict-based search algorithm for multi-agent pathfind-
ing. In IJCAI 2015, pages 740–746, 2015.

[3] T. Charrier, A. Queffelec, O. Sankur, and F. Schwarzentruber. Reachability and
coverage planning for connected agents. In IJCAI 2019, pages 144–150, 2019.

[4] T. Charrier, A. Queffelec, O. Sankur, and F. Schwarzentruber. Complexity of
planning for connected agents. Auton. Agents Multi Agent Syst., 34(2):44, 2020.

[5] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. K. S. Kumar, and S. Koenig.
Adding heuristics to conflict-based search for multi-agent path finding. In ICAPS
2018, pages 83–87, 2018.

[6] G. A. Hollinger and S. Singh. Multirobot coordination with periodic connectivity:
Theory and experiments. IEEE Transactions on Robotics,, pages 967–973, Aug
2012.

[7] P. Koupý. Visualization of problems of motion on a graph. http://koupy.
net/graphrec.php, 2010.

[8] J. Li, A. Felner, E. Boyarski, H. Ma, and S. Koenig. Improved heuristics for
multi-agent path finding with conflict-based search. pages 442–449, 08 2019.

[9] J. Li, D. Harabor, P. J. Stuckey, A. Felner, H. Ma, and S. Keonig. Disjoint splitting
for conflict-based search for multi-agent path finding. In ICAPS 2019, pages 279–
283, 2019.

[10] A. Queffelec, O. Sankur, and F. Schwarzentruber. Conflict-based search for con-
nected multi-agent path finding. CoRR, abs/2006.03280, 2020.

[11] A. Queffelec, O. Sankur, and F. Schwarzentruber. Planning for connected agents
in a partially known environment. In Advances in Artificial Intelligence - 34nd
Canadian Conference on Artificial Intelligence, Canadian AI 2021, Kingston,
ON, Canada, May 25-28, 2021, Proceedings, 2021.

[12] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artif. Intell., 219:40–66, 2015.

[13] D. Tateo, J. Banfi, A. Riva, F. Amigoni, and A. Bonarini. Multiagent connected
path planning: PSPACE-completeness and how to deal with it. In AAAI 20018,,
pages 4735–4742, 2018.

7

http://koupy.net/graphrec.php
http://koupy.net/graphrec.php


[14] J. Yu and S. M. LaValle. Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–
1177, 2016.

[15] J. Yu and D. Rus. Pebble motion on graphs with rotations: Efficient feasibility
tests and planning algorithms. In H. L. Akin, N. M. Amato, V. Isler, and A. F.
van der Stappen, editors, Algorithmic Foundations of Robotics XI - Selected Con-
tributions of the Eleventh International Workshop on the Algorithmic Foundations
of Robotics, WAFR 2014, 3-5 August 2014, Boğaziçi University, İstanbul, Turkey,
volume 107 of Springer Tracts in Advanced Robotics, pages 729–746. Springer,
2014.

8


	Introduction
	Demonstration Outline
	Choose an instance
	Visualize generated plans
	Create new maps

	Architecture of the Tool
	Algorithm
	Conclusion

