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Abstract We study a variant of the Multi-Agent Path Finding (MAPF) problem in
which the group of agents are required to stay connected with a supervising base sta-
tion throughout the execution. In addition, we consider the problem of covering an
area with the same connectivity constraint. We show that both problems are PSPACE-
complete on directed and undirected topological graphs while checking the existence
of a bounded plan is NP-complete when the bound is given in unary (and PSPACE-
hard when the encoding is in binary). Moreover, we identify a realistic class of topo-
logical graphs on which the decision problem falls in NLOGSPACE although the
bounded versions remain NP-complete for unary encoding.

Keywords Artifical Intelligence ·Multi-Agent Systems · Planning · Computational
Complexity
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1 Introduction

The Multi-Agent Path Finding (MAPF) problem asks for a plan to move a group of
agents to a target configuration in a graph while avoiding collisions. It is an important
problem in the design of groups of autonomous vehicles, and has been used in several
applications such as Kiva (Amazon Robotics) warehouse systems [58], autonomous
aircraft towing vehicles [36], characters in video games [49] and office robots [57].

A closely related problem is that of coverage path planning which consists in
computing a plan that visits a set of given locations in a graph. A comprehensive
survey is given in [23]. Applications include underwater ship hull inspection [18],
wildfire tracking with drones [40], to name a few.
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An important application area is that of information gathering missions in which
agents must visit a set of locations in an area and gather information using sensors
(e.g. camera, smoke sensor, hygrometer etc.). Some applications, such as search and
rescue missions, might require continuous connection between all agents and a base
station, for instance, in order to stream video and allow human operators to make
decisions [2]. In this case, the path planning and coverage path planning algorithms
must take additional connectivity constraints into account in order to compute suit-
able plans. Several works have explored planning algorithms in this setting e.g. [44,
39].

Some works on path planning and coverage path planning either assume a given
discrete graph model obtained by cell decomposition or visibility graph [34], or ap-
plies a sampling method to construct a graph on which combinatorial algorithms are
applied (see also the Related Work section below). Graph-based algorithms such as
those we study, and previous work such as A∗ for multi-agent path finding [45,52]
and conflict-based search [48] are thus relevant in this setting. It was shown that
multi-agent path planning is related to network flow problems, and that one can use
algorithms for the latter to compute plans [64]. It is thus important to understand the
computational complexity of these graph problems to understand the limits of the
algorithmic solutions and as well as heuristics that can be applied to the problem at
hand.

The variant of MAPF with connectivity constraints and related computational
complexity results were studied in [26,54]. In [54], complexity results are presented
for connectivity constraints with and without collision constraints and the existence
of a plan of arbitrary length in both cases was shown to be PSPACE-complete in
undirected graphs. Interestingly, it means that it has the same complexity as classi-
cal planning [8]. The work in [7] considers the path coverage problem and provides
experiments in which instances are described in Planning Domain Description Lan-
guage and solved with the planner Functional STRIPS [21]. In other words, MAPF
with connectivity constraints is more difficult than MAPF with collision constraints:
deciding the existence of a collision-free plan of arbitrary length is in P, as stated
in [65].

Now, concerning the optimization problems, there is a subtlety about the encoding
(unary vs binary) of the length of plans. For MAPF with collision constraints, as
the existence of a plan is equivalent to the existence of a plan of length O(|V |3)
where |V | is the number of nodes [65], the encoding of the length is not relevant.
Thus, several papers on the topic do not specify the encoding [5,35,41,62,63,64].
However, for MAPF with connectivity constraints, there is no such bound on the
length of a plan. We show that the existence of a bounded plan when the bound
is given in binary is PSPACE-complete; while when the bound is given unary, the
problem is NP-complete, even on undirected graphs, as claimed by Hollinger and
Singh in [26], although they do not explicitly specify the membership proof and are
ambiguous about the encoding1.

1 The bounded plan is clearly in NP when the bound ` is written in unary: simply guess a solution
of length at most ` and check that it is correct. When the bound is given in binary, a solution may be in
exponential size, and cannot be guessed in polynomial time.
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We mainly consider a setting where collisions are ignored. In fact, we are in-
terested in the computational complexity of maintaining connectivity in plans. As
in [26], agents can be assumed to be equipped with a low-level collision avoidance
system in some cases. Additionally, in drone applications with few agents, different
altitudes can be used to avoid collisions. Nevertheless, we do discuss the impact of
taking collision constraints into account in our results as well.

In this work, we are interested in the computational complexity of two prob-
lems: Reachability is the variant of MAPF with connectivity constraints, without
collision constraints; and Coverage is the variant of path coverage planning prob-
lem for multiple agents with connectivity constraints. As in [26,54], a problem in-
stance is a topological graph, which is a set of nodes given with movement edges
along which agents can move, and communication edges which determine pairs of
vertices at which communication is possible. Our results are as follows. We estab-
lish the computational complexity of determining the existence of plans, showing
that Reachability is PSPACE-complete on directed graphs as well, and proving that
Coverage is PSPACE-complete on both types of graphs. We study bounded versions
of these problems where a bound on the length of the plan is given as part of the
input; these are denoted by bReachability and bCoverage. As in [56], we advo-
cate for lengths of plans written in unary although we also study the complexity of
our problems when the encoding is binary. We show that both bReachability and
bCoverage are NP-complete when the bound is given in unary, and we clearly state
their PSPACE-complete when the bound is given in binary.

Given the prohibitively high complexity reported above, we are interested in
searching for ‘easier’ classes of topological graphs which are realistic for the purpose
of information gathering missions. One of our main contributions is the identification
of a natural class of topological graphs, called sight-moveable, for which we give ef-
ficient algorithms. This class requires that whenever an agent can communicate with
another node, then it can also move to that node while maintaining direct commu-
nication. This can be seen as a restriction on allowed topological graphs; however,
if the graph at hand does not have this property, it may be possible to enforce it by
removing some communication edges (not allowing the planning algorithm to rely on
those edges). Subsection 6.3 describes a way to obtain sight-moveable graphs from a
given topological graph. Thus, any plan found in the obtained sight-moveable graph
can be applied on the original one.

The class of sight-moveable graphs offers good computational properties: both
Reachability and Coverage belong to NLOGSPACE, meaning that they can be
solved by a non-deterministic algorithm that only uses a logarithmic amount of mem-
ory. Practically, it means that algorithms for generating plans can be parallelized, be-
cause NLOGSPACE is included in the Nick’s class (NC), [16], known to represent
decision problems for which there is a parallel algorithm. However, the bounded ver-
sions remain NP-complete. We complete the investigation with the complexity anal-
ysis of the problem with complete communication graphs, where all pairs of nodes
can communicate. In addition, we give complexity results on several variants of our
problems.

Note that the PSPACE lower bound given in [54] concerned the reachability prob-
lem where agents start from arbitrary locations, whereas we prove that the PSPACE
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lower bound still holds for agents starting all from the base. Furthermore, this article
extends the work of [11,12], in which the complexity of Reachability (when agents
start from the base) and Coverage on undirected topological graphs was left open. In
this article, we solved them (Theorem 3 and 4). We also include detailed proofs and
discuss relevant extensions that were not considered in previous work.

Overview We first discuss related work in Section 2. In Section 3, we introduce the
required notions for the rest of the paper. In Section 4, we describe the upper bounds
of our problems on directed topological graphs and, in Section 5, we prove the lower
bounds on undirected topological graphs to obtain completeness results. In Section 6,
we study sight-moveable topological graphs. Section 7 contains the complexity anal-
ysis for complete-communication topological graphs. We introduce relevant exten-
sions of our problems, in Section 8. We present a conclusion and future works in
Section 9.

2 Related Work

Planning problems for multiple agents were considered in the robot motion planning
setting, for instance the case of two disc-shaped robots moving in the presence of
polygonal obstacles [47]. The planning problem for multiple agents is PSPACE-hard
even when robot shapes are restricted to simple tiles [25]. PSPACE-hardness was
shown in case of unit-square robots with polygonal obstacles as well when agents
are unlabelled/homogeneous, or in our terminology, anonymous [51]. A line of al-
gorithms that avoid this high complexity are those based on sampling methods such
as [29,32]. These randomly sample points and check whether these points can be
connected respecting the constraints of the system. This allows one to quickly gener-
ate a tree or a graph between sampled points, and continue sampling points until the
desired plan is found.

The coverage path planning problem has been studied in different settings; see
the surveys [14,23,9]. This problem can be used to solve inspection (where a given
set of points of interests must be observed), surveillance (points of interest must be
continuously visited) problems, and can be used in applications such as lawn mowing
and floor cleaning. Sampling-based algorithm were given in this setting as well. One
can prove probabilistic completeness results in some cases, which means that if a
solution exists, then the algorithm will eventually find it with probability 1; although
it may not be able to detect that no solution exists [18]. Some of these algorithms
work in two phases: the first phase consists in sampling points and checking the fea-
sibility of the edges between them, and the second phase consists in solving a graph
problem on this structure, and repeating phase 1 if no solution is found. Some works
use approximations of metric traveling salesman problem (TSP) to find solutions in
the constructed graph [17,19]. Other works use A∗ search algorithms with suitable
heuristics to compute approximate solutions [22].

Several works consider the coverage path planning problem for multiple agents [13,
23,9]. In [33], a centralized framework is given to compute plans for the persistent
coverage problem without communication constraints. In [43], algorithms are given
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for the repeated coverage problem in unknown environments for a team of robots,
including the case of the line-of-sight communication restriction. This uses the cell
decomposition given in [15] for the coverage path planning. In [24,59] a graph struc-
ture is obtained thanks to a cell decomposition, and variants of spanning trees are
computed on this graph to ensure coverage with multiple robots. Graph problems
related to this problem are studied in [60]. The generalization of traveling salesman
problem was studied in [3] which is a relevant problem for coverage path planning in
the multi-agent setting. Some works also consider maneuverability and camera angle
constraints [1].

The continuous communication restriction appears in several works, e.g. [39,37,
61,55] which provide experiments to demonstrate the feasibility of the proposed al-
gorithms. Some works consider the use of dynamic teams of robots which exchange
their information on current solutions [38]. Communication and battery restrictions
are considered together in [10] which gives an algorithm in which robots can adopt
the roles for exploring, meeting, sacrificing themselves (continuing the mission in
case of low battery), and serving as communication relay for other robots. Differ-
ent communication restrictions have been considered as well [2] such as event-based
communication where the discovery of new information triggers communication (see
e.g [6]).

3 Preliminaries

In some path finding applications, one considers a discretization of the space which
yields a graph of movements on which algorithms are run. For instance, regular grids
which decompose the space in square, triangular or hexagonal cells, irregular grids
with techniques such as quadtrees [20,31] or Voronoı̈ diagrams comprehensively dis-
cussed in the survey [4].

Our work is independent of the particular method used to obtain the discretization.
We only work under the hypothesis that a feasible plan on the graph generated by the
discretization is also feasible in the continuous space.

We will, now, introduce the notions used throughout this work. We define for-
mally the general topological graphs and some subclasses, the notion of execution
and the properties considered, the decision problems we investigate and some known
results on these problems.

3.1 Topological Graphs

Our problems require graphs with two types of edges: movement edges along which
agents can move, and communication edges which specify whether agents at two
different locations can communicate. We call graphs with this additional information
topological graphs. The formal definition is the following and examples are depicted
in Figure 1.

Definition 1 (Topological Graph) A topological graph is a tuple G = 〈V,Em, Ec〉,
with V a finite set of nodes containing a distinguished node B called the base, Em⊆



6 Tristan Charrier et al.

(a) Directed (b) Undirected

(c) Sight-moveable (d) Complete-communication

Base Node
Movement Communication

Fig. 1: Examples of topological graphs.

V ×V a set of movement edges and Ec ⊆ V ×V a set of undirected communication
edges.

The nodeB is the supervision base station from which the agents start the mission
and with which they are required to keep communication.

In some applications movement edges are reversible, that is, if an agent can travel
from a node to another, it can also go back to the former through the same edge.
Undirected graphs thus naturally arise in some applications. See Figure 1b for an
example.

Definition 2 (Undirected Topological Graph) A topological graph is said to be
undirected if 〈V,Em〉 is an undirected graph.

Let us now introduce our new class, called sight-moveable topological graphs,
which is one of our main contributions. This class requires the movement edges to be
reflexive. In addition, whenever an agent can communicate with another node, then
it can also move to that node while maintaining the communication without using
another agent as a relay. An example of a sight-moveable graph is given in Figure 1c.

Definition 3 (Sight-Moveable Topological Graph) A sight-moveable topological
graph G = 〈V,Em, Ec〉 is a directed topological graph such that

1. Em ⊆ Ec,
2. for all v ∈ V , (v, v) ∈ Em,
3. and whenever (v, v′) ∈ Ec, there exists a sequence ρ = 〈ρ1, . . . , ρn〉 of nodes

such that v = ρ1, v′ = ρn, (v, ρi) ∈ Ec and (ρi, ρi+1) ∈ Em for all i ∈
{1, . . . , n− 1}.
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Last, we define the complete-communication topological graphs which are simply
sight-moveable topological graphs with undirected movement and complete commu-
nication topology. An example of such a graph is depicted in Figure 1d, and the
formal definition is the following.

Definition 4 (Complete-Communication Topological Graph) A topological graph
is said to be a complete-communication if it is a sight-moveable topological graph
such that 〈V,Em〉 is an undirected graph and Ec = V × V .

Observe that a complete-communication graphs are reflexive, undirected, con-
nected graphs with communication edges between each pair of nodes.

We say that a topological graph has a planar (grid) movement graph iff the graph
〈V,Em〉 is a planar (resp. grid) graph.

3.2 Execution

An execution is a finite sequence of configurations describing the positions of the
agents during the mission. We require that all agents should be connected to the base
in all configurations. We will use multi-sets to denote nodes occupied by agents in
configurations, since agents are anonymous. In other terms, if the goal is to reach a
target configuration, it does not matter which agent occupies which node, as long as
there is the right number of agents at each node. Other works use the term unlabelled
or homogeneous (see e.g. [51]); but we use the terminology of MAPF.

The formal definition of a configuration is the following.

Definition 5 (Configuration) A configuration c of n agents in a topological graph
G is a multi-set of elements of V of size n, denoted c = 〈c1, . . . , cn〉.

A configuration is said to be connected iff the graph 〈Vc, Ec ∩ (Vc×Vc)〉 is con-
nected with Vc = {B, c1, . . . , cn}.

Given a topological graph G = 〈V,Em, Ec〉, we write c→G c′ to say that agents
in c perform one-step movements to occupy nodes in c′. Formally, we have c→G c′

if c (resp. c′) can be written as 〈c1, . . . , cn〉 (resp. 〈c′1, . . . , c′n〉), and (ci, c
′
i) ∈ Em for

all 1 ≤ i ≤ n.

Definition 6 (Execution) An execution e of length ` with n agents in a topological
graph G is a sequence of connected configuration 〈c1, . . . , c`〉 such that cj →G cj+1

for all 1 ≤ i < `.

In our setting, the makespan of an execution is equal to its length.
A covering execution e = 〈c1, . . . c`〉 of length ` with n agents in a graph G

is an execution such that c1 = c` = 〈B, . . . , B〉 and for all v ∈ V , there exists
j ∈ {1, . . . , `} such that v appears in cj . An example of such an execution is depicted
in Figure 2 (from left to right).
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UAV
Movement
Communication
Active communication
Visited regions

Fig. 2: Example of a covering execution of length 10 with 3 agents. The plan is depicted from left to right
and from top to bottom.

3.3 Decision Problems

We formally define the problems Reachability and Coverage and their bounded
versions bReachability and bCoverage.

3.3.1 The Unbounded Case

Definition 7 (Reachability) Given a topological graph G, an integer n and a con-
figuration c of size n, decide if there is an execution 〈c1, . . . , c`〉 in G such that
c1 = 〈B, . . . , B〉 and c` = c.

Definition 8 (Coverage) Given a topological graph G and an integer n, decide if
there exists a covering execution with n agents.

We also consider variants Reachability-init and Coverage-init denote the prob-
lems in which the agents start at a given configuration rather than at the base. In
other words, the initial configuration is part of the input. In addition, Coverage-init
requires the agents to return to the initial configuration rather than to the base.

In the above problems, the encoding of the integer n (unary or binary) does not
matter. Indeed, in Reachability, Reachability-init and Coverage-init, the input al-
ready contains some configuration which is of size n; in Coverage, it is useless to
have n greater than the number of nodes.

3.3.2 The Bounded Case

The bounded versions are inspired from the so-called polynomial-length planning
problem [56] in which we ask for the existence of a plan of length bounded by a
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polynomial in the size of the planning task. This can be seen as the decision prob-
lem for the optimization problem that seeks to minimize the length of an execution,
except that we assume that the bound is given in unary. In fact, the goal of planning
algorithms is to compute plans, so given a bound ` on the length of the desired plan,
the algorithm always allocates memory space of size Ω(`) to store the plan.

That is why we use unary encoding in the following definitions. Binary encoding
of the length ` is discussed as well in Subsection 8.1.

Definition 9 (bReachability) Given a topological graph G, an integer n and a con-
figuration c of size n and ` an integer written in unary, decide if there is an execution
〈c1, . . . , c`′〉 in G s.t. `′ ≤ ` and c`

′
= c.

Definition 10 (bCoverage) Given a topological graph G, an integer n, an integer `
written in unary, decide if there exists a covering execution of length `′ such `′ ≤ `.

3.3.3 Restriction to Subclasses of Graphs

We consider the restriction of the above problems to the following subclasses of
graphs: directed graphs (denoted by dir), undirected graphs (denoted by und), sight-
moveable graphs (denoted by sm) and complete-communication graphs (denoted
by cc). The variants of these problems to a given graph class will be denoted us-
ing a subscript, that is, Reachability?, Coverage?, bReachability?, bCoverage?,
Reachability-init?, and Coverage-init? denote the restriction of these problems to
graphs of type ? ∈ {und, dir, sm, cc}.

3.4 Known Results

The connected version of MAPF was introduced in [26], in which a topological graph
discretizes the space and it is proved that the existence of a plan for the reachability
of a configuration of non-anonymous agents in a bounded number of steps with col-
lisions allowed is NP-hard:

Theorem 1 ([26]) bReachability-initund is NP-hard.

As stated before, the above paper actually states the NP-completeness of this problem
but without specifying the encoding of the bound.

Tateo et al., in [54], establish the complexity of Reachability-initund:

Theorem 2 ([54]) Reachability-initund is PSPACE-complete.

The setting of Tateo et al. is identical to ours with the exception that the starting
configuration is part of the input in their case. We relate both problems showing
PSPACE-hardness when agents all start at the base.
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Top. Graph/Problem Reachability Coverage bReachability bCoverage
(Def. 7) (Def. 8) (Def. 9) (Def. 10)

Directed PSPACE-complete
(Th. 3) PSPACE-complete

(Th. 4)
NP-complete

[26]
NP-complete

(Th. 8)

(Def. 1)
Undirected PSPACE-complete

[54](Def. 2)
Sight-Moveable

in LOGSPACE
(Prop. 3)

in NLOGSPACE
(Prop. 4)

NP-complete
(Def. 3) (Th. 6)
Complete-Comm. in NLOGSPACE

(Prop. 5)(Def. 4)

Fig. 3: Overview of the complexity results.

3.5 Overview of Results

In the rest of the paper, we study upper and lower complexity bounds for the defined
decision problems on different topological graphs. The following sections present
our results, respectively, for the general case, the undirected graphs, sight-moveable
graphs, and complete-communication graphs. An overview of these results is given
in Figure 3.

4 Directed Topological Graphs

In this section, we will consider the previous problems restricted to the class of di-
rected topological graphs. These problems are thus denoted by Reachabilitydir and
bReachabilitydir (resp. Coveragedir and bCoveragedir), with dir denoting the class
of directed topological graphs.

In this section, we show upper bounds for all our problems in the general case,
that is, for directed topological graphs. Observe that this also provides upper bounds
for other classes such as undirected graphs.

For the unbounded problems, we can design a straightforward non-deterministic
algorithm running in polynomial space, that guesses an execution by keeping in mem-
ory the last configuration, and, for Coverage, the set of visited regions. In fact, the
number of configurations is exponential, and a single configuration can be stored in
polynomial space. Moreover, one can easily bound the length of executions by an ex-
ponential as well. We conclude with Savitch’s Theorem (NPSPACE=PSPACE)[46]:

Proposition 1 Coverage and Reachability are in PSPACE.

For the bounded versions of the problems, since the bound is encoded in unary,
one can guess and check a path of bounded length in polynomial time. The result
follows.

Proposition 2 bCoverage and bReachability are in NP.

5 Undirected Topological Graphs

In this section we prove the PSPACE lower bound of the problems Reachability and
Coverage on undirected topological graphs.
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G

B

B

B′

v′1 v′2 v′n

v1 v2 vn

v′n+1 v′n+2

vn+1 vn+2

s1 s2 sn

t1 t2 tn

tn+1 tn+2

Fig. 4: Reduction of Reachability-initund into Reachabilityund. The node tn+2 communicates with all
nodes v such that v communicates with B.

We consider the result of Theorem 2 in the setting where all agents start at the
base.

Theorem 3 Reachabilityund is PSPACE-complete.

Proof The upper bound comes from Proposition 1. The lower bound is by reduction
from Reachability-initund (see Theorem 2). Let us denote by a tuple (G,B, n, s, t)
the instances of Reachability-initund where G is the graph, B the base, n the num-
ber of agents, s the initial configuration and t the target configuration. Instances of
Reachabilityund will be denoted by (G,B, n, t) as the initial configuration is fixed.

Let (G,B, n, s, t) be an instance of Reachability-initund. We show how to map
(G,B, n, s, t) to an instance of Reachabilityund in polynomial time. We construct the
instance (G′, B′, n + 2, t′) of Reachabilityund where G′ is given in Figure 4, B′ is
the base, and the final configuration t′ is 〈t1, . . . , tn, tn+1, tn+2〉.

Let us describe more precisely the construction of G′. We write s = 〈s1, . . . , sn〉
and t = 〈t1, . . . , tn〉. The graph G′ contains the graph G: in particular, it contains
B that is no longer the base; a new node B′ is now the base. Let us describe the
construction of G′.

Nodes We first create two layers of n + 2 vertices. The first layer is composed of
v1, . . . , vn, vn+1, vn+2 and the second of v′1, . . . , v

′
n, v
′
n+1, v

′
n+2. We also add

two nodes tn+1 and tn+2.
Movement We add movement edges between tn+1 and v′n+1, tn+2 and v′n+2, tn+1

and tn+1, and tn+2 and tn+2. Then, the role of tn+1 and tn+2 is to relay the
communication from B′ to nodes in G. We connect B′ to the first layer, i.e. with
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a movement edge between B′ and vi, for all 1 ≤ i ≤ n + 2. The first layer has
movement edges to the second layer, i.e. with a movement edge between vi and
v′i, for all 1 ≤ i ≤ n + 2. The n first vertices of the second layer has movement
edges to the initial configuration s such that there is a movement edge from v′i to
si, for all 1 ≤ i ≤ n.

Communication We add communication edges from B′ to tn+1, from tn+1 to tn+2

as well as from tn+2 to B and if there exists v such that B communicates v then
we create a communication edge from tn+2 to v. We add a communication edge
from B′ to vn+1, from vi to vi+1, for all 1 ≤ i < n, from vn+1 to v1 and from
vn to vn+2. We repeat this last procedure for the second layer as well.

We now give the formal definition of our reduction. In the sequel, we use the sym-
bol t to emphasize that the union is of disjoint sets. Formally, given (G,B, n, s, t)
with G = 〈V,Em, Ec〉 with base B, we define (G′, B′, n + 2, t′) where G′ =
〈V ′, E′m, E′c〉 with base B′ where:

– V ′ := V t
{
B′, v1, . . . , vn, v

′
1, . . . , v

′
n, vn+1, vn+2, v

′
n+1, v

′
n+2, tn+1, tn+2

}
– E′m is the symmetric closure of

Em ∪ {(B′, v1), . . . , (B′, vn), (B′, vn+1), (B
′, vn+2)}

∪ {(v1, v′1), . . . , (vn, v′n)} ∪ {(v′1, s1), . . . , (v′n, sn)}
∪
{
(vn+1, v

′
n+1), (vn+2, v

′
n+2), (v

′
n+1, tn+1), (v

′
n+2, tn+2)

}
∪{(tn+1, tn+1), (tn+2, tn+2)};

– E′c is the symmetric closure of
Ec ∪

{
(v′1, v

′
2), . . . , (v

′
n−1, v

′
n)
}
∪ {(v1, v2), . . . , (vn−1, vn)}

∪
{
(B′, vn+1), (B

′, v′n+1), (B
′, tn+1)

}
∪
{
(v′1, v

′
n+1), (v

′
n, v
′
n+2), (tn+2, B)

}
∪{(tn+2, v) | (B, v) ∈ Ec}.

It is worth noting that all connected configurations inG are now connected viaB′,
tn+1 and tn+2. We now show the instance (G,B, n, s, t) of Reachability-initund is
feasible if, and only if in the constructed instance (G′, B′, n+2, t′) of Reachabilityund
is feasible.

(⇒) Suppose that t is reachable from s in the instance (G,B, n, s, t). We con-
struct an execution for (G′, B′, n+2, t′) as follows. All agents start fromB′. The n+2
agents first reach 〈v1, . . . , vn+2〉, then 〈v′1, . . . , v′n+2〉, then 〈s1, . . . , sn, tn+1, tn+2〉.
After that, the agents at positions s1, . . . , sn reach positions t1, . . . , tn (following the
same plan as in for (G,B, s, t)), while the two others remain in tn+1 and tn+2.

(⇐) Let us consider an execution e from 〈B′, . . . , B′〉 to t′ for (G′, B′, n+2, t′).
Let us extract an execution from s to t for (G,B, n, s, t). In order to do so, we prove
the Facts 1 and 2.

Fact 1 The configuration 〈s1, . . . , sn, tn+1, tn+2〉, up to a permutation, appears in
the execution e.

Proof The configuration t′ is reached at the end of the execution e and the n+2 agents
started at B′. Thus, n agents must enter into G and be at one of the si at some point.
Let us consider the moment of the execution e when an agent, denoted a, occupies
a node si. For that, it must be at v′i before going to si. Furthermore, for agent a to
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be connected at v′i the nodes v′n+1 and v′1, . . . , v
′
i−1 must be occupied. At the next

step, at least the nodes tn+1 and tn+2 must be occupied for agent a to be connected
at si. Hence, when a is at v′i, the agent which will occupy tn+2 must be at v′n+2, thus,
forcing v′i+1, . . . , v

′
n to be occupied. No agent in this configuration can move to a

node vi of the first layer. Indeed, this agent would be disconnected, lacking a relay at
vn+1. Therefore, the next configuration must be 〈s1, . . . , sn, tn+1, tn+2〉. 4

Now, by Fact 1, we can consider the last time at which the agents are in the
configuration 〈s1, . . . , sn, tn+1, tn+2〉. We prove the Fact 2.

Fact 2 Between that last time and the end of the execution, there are always the same
n agents in G, one agent on tn+1 and one on tn+2.

Proof A similar reasoning to the last one can be used to show that if an agent is
located at si before moving to v′i then nodes from s1 to sn as well as tn+1 and
tn+2 are occupied. Thus, since this is the last time the agents are in the configuration
〈s1, . . . , sn, tn+1, tn+2〉, none of the n first agents can move out of G. Furthermore,
tn+1 and tn+2 must stay occupied in order for the n agents in G to be connected
to B′. 4

From Facts 1 and 2, the positions of the first n agents in the portion of the execu-
tion between the last time in 〈s1, . . . , sn, tn+1, tn+2〉 and t′ are fully in G and gives
an execution starting at s and finishing at t for (G,B, n, s, t). ut

We now turn our attention to Coverageund. We start by establishing the PSPACE-
completeness of Coverage-initund, and then show how to reduce this problem
to Coverageund.

Lemma 1 Coverage-initund is PSPACE-complete.

Proof The membership of Coverage-initund to PSPACE can be shown by using the
same arguments as for the proof of Proposition 1. The proof of PSPACE-hardness is
obtained by polynomial reduction from Reachabilityund. We map a
Reachabilityund-instance (G,B, n, t) to the Coverage-initund-instance (G′, B, 2n, s)
where G′ is depicted in Figure 5 and starting at the configuration
s = 〈B, . . . , B, v11 , . . . , v1n〉. The definition of s means that n agents start at the base
B and n agents start in positions v11 , . . . , v

1
n, that are in the reduction gadget. Let us

describe the construction of G′.

Nodes We make four layers of vertices from v11 , . . . , v1n to v41 , . . . , v4n.
Movement We create movement edges between vji and vj+1

i , with 1 ≤ i ≤ n and
1 ≤ j ≤ 3. Each node of the first and last layers have self-loops. The node v41 has
a movement edge to all nodes of G.

Communication The node v4n has a communication edge to all nodes of G and all
nodes of the fourth layer. We create a communication edge between v2i to ti, for
all 1 ≤ i ≤ n. We create a communication edge between v3i and v3i+1, for all
1 ≤ i < n. Finally, we connect in communication the nodes of the first layer and
the node v31 to the base B.



14 Tristan Charrier et al.

G

B

G G

t1 t2 tn

v11 v12 v1n

v21 v22 v2n

v31 v32 v3n

v41 v42 v4n

Fig. 5: Reduction of Reachabilityund to Coverage-initund.

Formally, given (G,B, n, t) with G = 〈V,Em, Ec〉 with base B, we define
(G′, B, 2n, s) where G′ = 〈V ′, E′m, E′c〉 with base B where:

– V ′ := V t
{
v11 , . . . , v

1
n, v

2
1 , . . . , v

2
n, v

3
1 , . . . , v

3
n, v

4
1 , . . . v

4
n

}
– E′m is the symmetric closure of

∪Em ∪
{
(v, v41) | v ∈ V

}
∪
{
(v1i , v

1
i ), (v

1
i , v

2
i ), (v

2
i , v

3
i ), (v

3
i , v

4
i ), (v

4
i , v

4
i ) | i ∈ {1, . . . , n}

}
– E′c is the symmetric closure of

Ec ∪
{
(B, v11) . . . (B, v

1
n)
}
∪
{
(t1, v

2
1), . . . , (tn, v

2
n)
}

∪
{
(B, v31), (v

3
1 , v

3
2), . . . , (v

3
n−1, v

3
n)
}

∪
{
(v41 , v

4
n) . . . (v

4
n−1, v

4
n)
}
∪
{
(v4n, v) | v ∈ V

}
;

and s = 〈B, . . . , B, v11 , . . . , v1n〉.
We now show the instance (G,B, n, t) of Reachabilityund is feasible iff the in-

stance (G′, B, 2n, s) of Coverage-initund is feasible.
(⇒) Suppose the configuration t is reachable in G. Let us construct an execution

starting at s in G′ that cover all nodes in G′. First, the first n agents reach config-
uration t, while the other n agents stay at layer v1i using the self-loops. After that,
the first n agents stay at t while the others progress to the fourth layer v4i . Finally,
while the agents at v42 to v4n don’t move using the self loops, the agent at v41 covers
the whole graph since the presence of an agent at v4n makes sure that all nodes of G
are connected to other agents and to the base. Once finished, this agent can go back
to v41 and the n agents can return back to the layer 1 as initially. Finally, the n agents
occupying configuration t can go back to B by following the same path in reverse.
This constitutes a covering execution for Coverage-initund.

(⇐) Assume that G′ can be covered, and let T denote the first time v4n is visited.
The agent at v4n can only be at v3n at time T − 1. Thus, the nodes v31 , . . . , v

3
n−1 must

also be occupied due to connectivity constraint. Then, at time T−2, all n agents were
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Reachability-initundReachability-initund

Reachabilityund

Coverage-initund

Coverageund

Reachabilitydir

Coveragedir

Th. 3

Lemma 1

Th. 4

Fig. 6: Reductions of Section 5.

on the second layer v2i . In fact, the layer 4 must be empty at this point by the choice
of T and due to connectivity edges (and note also that there are no self-loops on the
third layer). But since each node v2i is only connected to ti, at time T − 2 the other n
agent must be at configuration t. This concludes the proof. ut

Theorem 4 Coverageund is PSPACE-complete.

Proof The upper bound comes from Proposition 1. We present the lower bound,
which is by reduction from Coverage-initund. We map a Coverage-initund-instance
(G,n, s) to the Coverageund-instance (G′, n + 2) of where G′ is defined as in Fig-
ure 4 (ignoring vertices t1, . . . , tn). The formal description is given in the proof of
Theorem 3.

We show that instance (G,n, s) of Coverage-initund is feasible iff instance (G′, n+
2) of Coverageund is feasible. The proof is very similar to the proof of Theorem 3.
The first n agents are used for the execution in G while the two others operate in the
gadget.

(⇒) If G can be covered starting from s then in G′, the agents can first reach s as
described in proof of Theorem 3, then follow the same plan to cover the graph, and
execute the plan in reverse to come back to s and then back to B′. Meanwhile, the
two others reach tn+1 and tn+2 loops there and come back to B′.

(⇐) Assume there is a covering execution inG′ from baseB′. We already proved
in Theorem 3 (Fact 1) that from configuration 〈B′, . . . , B′〉 the agents necessarily go
through configuration 〈s1, . . . , sn, tn+1, tn+2〉 to go in G and that the first n agents
move in and out of G at the same step. Hence, the execution in G′, minus the steps in
the gadget, can be reproduced in G. ut

We conclude this section by depicting, in Figure 6, the reductions used and the
proof scheme. The dotted arrows represent the unmentioned corollaries.

6 Sight-Moveable Topological Graphs

The main challenge in deciding whether there exists a connected plan is to verify that
the given number of agents can visit a node of the graph while staying connected.
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B = ci0 ci1 ci2 ci3 ci4 ci5 ci6

Fig. 7: Example of an ordering of nodes in V ′ = {c1, . . . , cn, B}.

Indeed, to visit a location connected to, say, the base, an agent might have to rely
on multiple other agents. Hence, if we can guarantee that whenever two locations
are connected we can move an agent from one to the other without the need of an
extra relay, the problem becomes “easy”. This assumption underlies the definition of
sight-moveable topological graphs. Interestingly, the unbounded decision problems
Reachabilitysm and Coveragesm are in LOGSPACE and NLOGSPACE, respectively.
Unfortunately, the bounded version bReachabilitysm is NP-complete. At the end of
the section, we discuss a relaxation method based on this class of graphs.

6.1 Upper Bounds

Let us call USTCONN (resp. STCONN) the problem of determining whether two
nodes of a given undirected (resp. directed) graph are connected. The algorithms
presented in this section rely on the following complexity result:

Theorem 5 ([42]) USTCONN is in LOGSPACE.

Proposition 3 Reachabilitysm is in LOGSPACE.

Proof Let us define the problem UCONN as that of checking whether a given undi-
rected graph is connected. By Theorem 5, this problem is in LOGSPACE since it
suffices to check the connectivity between all pairs of nodes in LOGSPACE.

We are going to reduce Reachabilitysm to UCONN in logarithmic space.
Let G = 〈V,Em, Ec〉 a sight-moveable topological graph and c a configuration.

Let V ′ = {c1, . . . , cn, B}. We show that the configuration c is reachable iff the
restriction of G′ := (V,Ec) to the nodes in V ′ is a connected graph. It is clear that
this condition is necessary since if G′ is not connected then the agents cannot occupy
configuration c.

Conversely, assume that G′ is connected. Then, let us order the nodesB, c1, . . . , cn
into ci0 , ci1 , ci2 , . . . , cin with ci0 = B, such that for all 1 ≤ j ≤ n, cij is connected
to some cik with 0 ≤ k < j; such an order exists, and can be obtained by breadth-first
search in a Ec-spanning tree of V ′ at root B, see Figure 7 for an example.

We then construct an execution for reaching the configuration c as follows. The
construction is by induction on 0 ≤ j ≤ n: at step j, the first j agents occupy nodes
ci1 , . . . , cij . The base case j = 0 is the empty execution. For j ≤ 1, let k < j such
that (cik , cij ) ∈ Ec. We send the j-th agent to cik following the path that has been
constructed earlier, by induction. We then move that agent to cij following a path that
stays connected with cij , which exists by the sight-moveable property.

Thus, (G,n, c) is a positive Reachabilitysm-instance iff G′ is a positive UCONN-
instance. The reduction is in logarithmic space: we compute G′ by enumerating all
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Ec-edges (u, v) in G, and we output (u, v) when u, v ∈ V ′. We recall that we only
take into account the working memory for computing G′; the output – G′ itself – is
not taken into account in the used space (see e.g. [50], Ch. 8, Def. 8.21). ut

Before giving the complexity of Coveragesm, we need the following intermediary
result. Let us call Bounded-USTCONN the following problem: given an undirected
graph G, two nodes s, t, an integer n, decide whether there is a path of length at most
n from s to t in G. Note that, whatever the encoding of n is, the problem Bounded-
USTCONN can be decided in logarithmic space.

Lemma 2 Bounded-USTCONN is in NLOGSPACE.

Proof We reduce Bounded-USTCONN to STCONN in logarithmic space as fol-
lows. From a Bounded-USTCONN instance (G, s, t, n) we construct in logarithmic
space a STCONN instance (G′, s′, t′):

1. The nodes of G′ are pairs (v, j) where v is a node of G and j ∈ {0, 1, . . . ,m}
where m is the minimum of n and the number of nodes of G.

2. The graph G′ contains an edge between (v, j) and (v′, j + 1) when there is an
edge between v and v′ in G or when v = v′;

3. s′ = (s, 0) and t′ = (t, n).

The STCONN instance (G′, s′, t′) can be computed in log-space. Step 1 requires to
store the current node v of G′ to be processed and an integer j written in binary, that
is of size logm. Importantly, as m is smaller than the number of nodes in G′, the
representation of m is logarithmic in the size of the input. For this reason, note that
the overall spatial complexity does not change even if the encoding of n is in binary.

ut

Proposition 4 Coveragesm is in NLOGSPACE.

Proof Let G = 〈V,Em, Ec〉 be a sight-moveable topological graph and n an integer
written in unary. We prove that for all vertices v, there is a path of length at most n
from v to the base B in the communication graph iff (G,n) is a positive instance of
Coveragesm. One direction is obvious: if (G,n) is a positive instance, then all ver-
tices must within a distance of at most n from the base in the communication graph;
otherwise no connected configuration can visit that vertex. Assume that all vertices
are within a distance of n from the base. For any vertex v, consider path v1, . . . , vk
in the communication graph, with v1 = B, vk = B, and such that (vi, vi+1) ∈ Ec.
We apply the construction of Proposition 3 to build an execution from configuration
Bn to some configuration where k agents occupy {v1, . . . , vk}, and others stay at B.
We now extend this execution to “roll back” so that all agents return to the base. We
first let the agent at vk, go to vk−1: this is possible by the sight-moveable property
and since (vk, vk−1) ∈ Ec. Then the two agents together move to vk−2, and so on,
until all come back to B. We can now combine these executions to cover all vertices,
and let agents end in the base.

Thus, the algorithm consists in checking sequentially, for all v, that ((V,Ec), v, B, n)
is a positive instance of Bounded-USTCONN. Hence, we obtain a non-deterministic
algorithm in logarithmic space to decide Coveragesm. ut
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Fig. 8: Gadgets for reduction of 3SAT into bReachabilitysm.
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Fig. 9: Reduction of 3SAT into bReachabilitysm . Communication edges implied by movement edges are
not displayed. The variable x1 is present in the clause c1 and cn.

6.2 Lower Bounds

We now focus on the NP lower bound of bReachabilitysm.

Theorem 6 bReachabilitysm is NP-complete even for a fixed execution length ` ≥ 3.

Proof The upper bound comes from Proposition 2. The lower bound proof is by
polynomial time reduction from 3-SAT problem (see [28]). Given a 3-SAT instance,
set of clauses c1, . . . , cm with variables x1, . . . , xn, we describe the construction of
an instance (G, k, c) of bReachabilitysm with k = n+m agents.

The topological graph G = 〈V,Em, Ec〉 is constructed as follows. We start by
placing the base B from which the agents start their mission.

Please recall that in a sight-moveable graph all movements edges are also com-
munication edges in the construction below even if not explicitly stated.

For each variable x, we construct a gadget composed of 5 nodes connected to the
base depicted in Figure 8b: nodes xi, ¬xi, staging nodes vxi , v¬xi and a goal node
gxi

. We add movement edges from B to vxi
, from vxi

to x and from x to gxi
(resp.

from B to v¬xi
, from v¬xi

to ¬xi and from ¬xi to gxi
). As for the communication,

the node xi (res. ¬xi) communicates with the base.
For each clause cj , we construct a gadget composed of 3 nodes depicted in Figure

8a. We create a node cj , a staging node vcj and a goal node gcj . We add movement
edges from B to vc, from vcj to cj and from cj to gcj . The communication between a
clause cj and a literal xi or ¬xi is dictated by the existence of the literal in the clause.
We do not use direct communication edges because the obtained topological graph
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should be sight-moveable. Instead, we use fully connected paths of length 4. Such a
path between – let say – xi and cj consists three intermediate nodes p1ij , p2ij , p3ij , such
that there is a path made up of movement edges from xi to cj , passing throw p1ij , p2ij ,
p3ij . Furthermore, we suppose that the nodes xi, p1ij , p2ij , p3ij and cj form a clique
w.r.t. to the communication edges. Now, there is a fully connected path of length 4
between xi and cj if and only if xi ∈ cj ; and there is a fully connected path of length
4 between ¬xi and cj if and only if ¬xi ∈ cj .

We add movement edges from gxi to gxi+1 , and from gcj to gci+1 for all 1 ≤ i <
n, as well as from gxn

to gc1 . Last, we add a fully connected path of length 4 from
gx1

to the base such that (gx1
, B) ∈ Ec, in the sense that all nodes of this path have

communication edges between them. This translation is polynomial in the number of
clauses and variables. The construction is depicted in Figure 9. The snake-like path
from gx1 to B is a fully connected path of length 4.

From a 3-SAT instance, one can construct the graph G and ask for an execution
of length 3 to reach the configuration 〈gx1

, . . . , gxn
, gc1 , . . . , gcm〉.

Formally, the topologic graph G = 〈V,Em, Ec〉 is defined by:
– V := {B, vx1

, v¬x1
, . . . , vxn

, v¬xn
, vc1 , . . . , vcm}

∪{gx1 , . . . , gxn , gc1 , . . . , gcm}
∪
{
p1B , p

2
B , p

3
B

}
∪
{
p1ij , p

2
ij , p

3
ij | i ∈ {1, . . . , n} , j ∈ {1, . . . ,m}

}
– Em is the symmetric closure of

{(B, vx1
), (B, v¬x1

), . . . , (B, vxn
), (B, v¬xn

), (B, vc1), (B, vc1xm
)}

∪ {(vx1
, x1), (v¬x1

,¬x1), . . . (vxn
, xn), (v¬xn

,¬xn)}
∪ {(vc1 , c1), . . . , (vcm , cm)}
∪ {(x1, gx1), (¬x1, gx1), . . . , (xn, gxn), (¬xn, gxn)}
∪ {(c1, gc1), . . . , (cm, gcm)}
∪
{
(gx1

, gx2
), . . . (gxn−1

, gxn
), (gxn

, gc1), (gc1 , gc2), ..., (gcm−1
, gcm

}
∪
{
(B, p1B), (p

1
B , p

2
B), (p

2
B , p

3
B), (p

3
B , gx1

)
}

∪
{
(xi, p

1
ij), (p

1
ij , p

2
ij), (p

2
ij , p

3
ij), (p

3
ij , cj) | xi ∈ cj

}
∪
{
(¬xi, p1ij), (p1ij , p2ij), (p2ij , p3ij), (p3ij , cj) | ¬xi ∈ cj

}
– Ec is the symmetric closure of

Em ∪ {(B, x1), (B,¬x1), . . . , (B, xn), (B,¬xn)}

∪

 (B, p1B), (p
1
B , p

2
B), (p

2
B , p

3
B), (p

3
B , gx1

),
(B, p2B), (p

1
B , p

3
B), (p

2
B , gx1)

(B, p3B), (p
1
B , gx1), (B, gx1)


∪


(xi, p

1
ij), (p

1
ij , p

2
ij), (p

2
ij , p

3
ij), (p

3
ij , cj),

(xi, p
2
ij), (p

1
ij , p

3
ij), (p

2
ij , cj)

(xi, p
3
ij), (p

1
ij , cj), (xi, cj)

| xi ∈ cj


∪


(¬xi, p1ij), (p1ij , p2ij), (p2ij , p3ij), (p3ij , cj),
(¬xi, p2ij), (p1ij , p3ij), (p2ij , cj)
(¬xi, p3ij), (p1ij , cj), (¬xi, cj)

| ¬xi ∈ cj

;

where nodes pk• are the intermediate nodes in the fully connected paths.

Fact 3 G is a sight-moveable topological graph.
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Proof Concerning the communication between the base B and the nodes xi (resp.
¬xi), a path does exist under the communication of B to reach xi (resp. ¬xi), due to
communication induced by the movement. For the other communication edges, they
are part of full connected paths which guarantee the sight-moveable condition. This
ends the proof of Fact 3. 4

Now let us prove that a 3-SAT instance is satisfiable iff there exists an execution
of at most 3 steps in the graph G.

(⇒) We show that if a 3-SAT instance is satisfiable then there exists an execution
of at most 3 steps in the graph G built from it. Let val be a truth assignment which
satisfies the instance. Recall that there are n+m agents. The first step of the execu-
tion consists in moving an agent in each vci , and for each variable xi, moving one
agent to vxi

if the val(xi) = 1 and to v¬xi
otherwise. Note that all staging nodes

communicate with B.
In the second step, all agents progress to their unique successors other than B.

While all nodes xi and ¬xi are connected to B, a node ci is connected to B if and
only if there is an agent in one of its literals. This is the case since val satisfies the
formula. In the third step of the execution, agents go to states gxi

and gci . Here, the
connection with the base is ensured since gx1

is connected to it, and gx2
is connected

to gx1 , gx3 is connected to gx2 and so on.
This execution is thus a solution of bReachabilitysm with bound ` = 3.
(⇐) We show that if in the graph G there exists an execution of at most 3 steps

constructed from a 3-SAT instance, then the instance is satisfiable. Let us assume
that we have an execution e of at most 3 steps with the last configuration being
〈gx1

, . . . , gxn
, gc1 , . . . , gcm〉.

The only shortest path from B to gci is of length 3 and goes through vci . For
states gxi , the only shortest paths are also of length 3 and go through either vxi

or v¬xi
. Thus, in order to reach the given target configuration, at the initial step,

agents must cover the states vci and either vxi
or v¬xi

for all i, j. At the second step,
following the above mentioned shortest paths, agents will be at states ci and either xi
or ¬xi depending on the staging nodes they were occupying. The last step is the target
configuration. Since the agents are connected at the second, it follows that for each
clause cj , the state corresponding to some literal of cj is occupied by an agent. Thus,
the valuation on variables encoded by the choices of the agents satisfies the 3-SAT
instance. ut

6.3 Relaxation

For unbounded reachability and coverage, it seems tempting to take advantage of ef-
ficient algorithms on sight-moveable topological graphs (Proposition 3 and 4). In this
subsection, we propose a transformation of a topological graph into a sight-moveable
sub-graph. This transformation leads to a relaxation method: a solution found in the
obtained sight-moveable topological graph still holds in the original graph.

This transformation requires the original graph to already satisfy properties 1 and
2 of Definition 3. If not, (1) we remove movement edges (v, v′) ∈ Em that are not
in Ec, (2) we remove all nodes without a self-loop.
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Algorithm 1 Transformation into a sight-moveable topological graph
Require: A topological graph G = 〈V,Em, Ec〉 satisfying properties 1 and 2 of Definition 3
1: C ← ∅
2: for all v ∈ V do
3: Q← {v}
4: while Q not empty do
5: v′ ← Q.pop()
6: for all v′′ | (v′, v′′) ∈ Em do
7: if (v, v′′) ∈ Ec then
8: C ← C ∪ {(v, v′′)}
9: Q← Q ∪ {v′′}

10: E′
c := {(v, v′) | (v, v′) ∈ C and (v′, v) ∈ C}

11: return 〈V,Em, E′
c〉

The simple transformation, given in Algorithm 1, prunes the communication
edges which do not respect the property 3 of sight-moveable topological graphs, de-
scribed in Definition 3. We now show this transformation outputs a sight-moveable
topological graph.

Theorem 7 Algorithm 1 constructs a sight-moveable topological graph.

For simplicity, we say that a node v is sight-moveable to a node v′ iff there exists
a sequence ρ = 〈ρ1, . . . , ρn〉 of nodes such that v = ρ1, v′ = ρn, (v, ρi) ∈ Ec

and (ρi, ρi+1) ∈ Em for all i ∈ {1, . . . , n − 1}. Algorithm 1 consists in running a
breadth-first search from each vertex, and marking all reachable vertices v′ to which v
is sight-moveable. The communication edges are kept if the sight-moveable property
was shown to hold in both directions.

Proof First, given a node v, we show that the queue Q contains only nodes that v is
sight-moveable to.

Invariant Given v, let Iv: for all v′ ∈ Q, v is sight-moveable to v′.

Proof Before entering the while loop, at Line 3, the queue Q contains only v. Hence,
the Invariant Iv is initially satisfied. Let us suppose that Invariant Iv holds after an
arbitrary number of loop iterations. If Q is empty, Invariant Iv holds. Otherwise, a
node v′ is popped out of Q. If a successor of v′ communicates with v then we add the
successors of v′ toQ. Invariant Iv holds since v is sight-moveable to v′, by induction,
and (v, v′′) ∈ C. 4

We add a pair (v, v′) to C iff v′ was in Q and (v, v′) ∈ Ec. Hence, given Invari-
ant Iv , (v, v′) ∈ C iff v is sight-moveable to v′. Finally, E′c is the set of pairs (v, v′)
such that (v, v′) ∈ C and (v′, v) ∈ C, that is v is sight-moveable to v′ and v′ is sight-
moveable to v. Therefore, the graph returned by Algorithm 1 is sight-moveable. ut

This relaxation offers the opportunity to verify efficiently if a topological graph
contains a solution. It is worth noting that the original topological graph might admit
a solution, while no solution is found by the relaxation.

We illustrate the usage of the relaxation on the following maps, depicted in Fig-
ure 10, previously used by Tateo et al., in [54], for the study of their algorithms.
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(a) Office (b) Open

(c) Coast

Fig. 10: Maps.

Map Original Graph Relaxation
|V | |Em| |Ec| |Ec|

Office 1669 5618 277059 227155
Open 2421 9114 295155 294503
Coast 5184 20448 580644 580644

Fig. 11: Characteristics of the discretized graphs and their relaxations.

We use a similar discretization of the maps, i.e. the nodes of the graph are obtained
by cells of 11×11 pixels for Office and 13×13 for Open, and we assume the com-
munication range to be of 100 pixels. In addition, we use the same discretization
with cells of 15×15 pixels for Coast, a map from the Benchmarks for Grid-Based
Pathfinding [53], with an identical communication range.

We show, in Figure 11, the size of each component of the graphs obtained af-
ter discretization and the impact of the relaxation. The relaxation of Office removes
up to 18% of the communication edges. We can observe that most of the commu-
nication trough the walls, allowed by the communication range, will be removed in
the relaxation since the sight-moveable property cannot be ensured. In particular the
large room in the center loses a lot of communication edges with its surrounding.
However, the relaxation of Open removes only 0.2% of the communication due to its
small number of obstacles. Finally, the relaxation does not remove any communica-
tion edges from the discretization made of Coast.

Intuitively, the relaxation removes communication links between two vertices
which cannot be connected by maintaining communication. In fact, if a node com-
municates through an obstacle, then the sight-moveable property requires it to have a
bypass path that remains connected. This is why, in the Office map, in particular at the
borders of the central room, most communication links through walls are removed by
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the algorithm. But if the size of the obstacles is larger than the communication range,
then there will be mostly no communication through obstacles, and it is unlikely that
the relaxation will remove any communication edges: this can be observed on the
Coast map where no edge is removed by the algorithm.

Thus, in open maps such as cities, forests etc., we expect that our relaxation re-
moves a small number of edges and preserves the feasibility of our problems. It might
however remove more communication edges, rendering the problems infeasible in in-
door applications (inside of buildings, mazes, etc.). We leave the empirical evaluation
of this relaxation for future work.

7 Complete-Communication Topological Graphs

The following result relies on the fact that the communication is complete.

Proposition 5 bReachabilitycc is in NLOGSPACE.

Proof We refer to Lemma 2. Indeed, given a configuration c and ` ∈ N, the straight-
forward iteration on the locations ci followed by the verification of a path of at most
` (given in unary) steps from B to ci yields a sound and complete algorithm for
bReachabilitycc. ut

Our NP lower bound proof of the bCoveragecc problem is by reduction from the
grid Hamiltonian cycle (G-HC) problem which is the Hamiltonian cycle problem
restricted to grid graphs and is NP-complete [27]. We use this particular version of
the Hamiltonian cycle problem for simplicity of the proof. Futhermore, we obtain a
lower bound on the bCoveragecc problem with a grid movement graph.

Theorem 8 Even restricted to grid graphs, bCoveragecc is NP-complete for a fixed
number of agents n ≥ 1.

Proof The upper bound follows from Proposition 2.
We give a polynomial-time reduction from the G-HC problem. Consider an in-

stance of G-HC denoted G = 〈V,E〉.
Consider the sight-moveable topological graph G′ = 〈V,Em, Ec〉 with undi-

rected movement Em = E and Ec = V × V and associate a single agent and the
bound |V | to the bCoveragecc instance. We call a simple cycle containing all vertices
a tour. We prove that there exists a tour t in G iff there exists a covering execution of
length |V | in G′.

(⇒) Any tour of G is a valid execution satisfying bCoveragecc since the commu-
nication edges form a complete graph, and the bound is |V |.

(⇐) Let us suppose that we have an execution of length |V | which covers the
graph G′. The execution starts and ends at B and visits all nodes in |V | steps. Hence,
the execution visits all nodes only once and is a cycle in the graph.

ut

In Figure 12, we depicted the results obtained in this section and in Section 7.



24 Tristan Charrier et al.

3-SAT

bReachabilitysm

bReachabilitydir

G-HC

bCoveragecc

bCoveragedir

Th. 6 Th. 8

Fig. 12: Reductions of Sections 6 and 7.

8 Variants

In this section, we introduce several variants and study their impact on the complexity.

8.1 Bounded Reachability and Coverage with Binary Bounds

Our membership NP proofs for the bounded versions of the reachability and coverage
problems rely on the unary encoding of the bound given in input. It is relevant to
investigate the impact of providing that bound in binary on the complexity of the
problems.

We show that both problems bReachabilitydir and bReachabilityund with the
bound ` written in binary are both PSPACE-complete. The membership to PSPACE
can be shown as in Proposition 1: since a binary counter can be added to count up
to `. For bReachabilityund, the PSPACE-hardness follows from a reduction from
Reachabilityund, whose PSPACE-hardness is established in Theorem 3. Indeed, any
instance of Reachabilityund can be reduced to bounded reachability with bound ` =
|V |n. In fact, if Reachabilityund has a solution, then there is a plan of length at
most |V |n. Indeed, in the worst case, the agents must go through all configurations
possible in the graph. This number can be computed in polynomial time and rep-
resented in binary. The same argument is used to show the PSPACE-hardness of
bReachabilitydir by reduction from Reachabilitydir whose PSPACE-hardness was
proved in [54] (see Theorem 2).

Theorem 9 The variants of bReachabilitydir and bReachabilityund with ` written in
binary are PSPACE-complete.

A similar argument can be used to show the PSPACE-hardness of bCoverageund
and bCoveragedir. In fact, if there is a covering execution, then there must be one
of length at most |V |n × (|V | + 1). Indeed, the agents must traverse at most the
|V |n possible configurations to reach each node of the graph and go back to the base,
which means an upper bound of |V |n×(|V |+1) for the whole execution. This bound
can be written in binary in polynomial space, so PSPACE-completeness also holds
for these problems.
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Theorem 10 The variants of bCoveragedir and bCoverageund with ` written in bi-
nary are PSPACE-complete.

8.2 Weighted Movement Graph

An interesting extension is obtained by assigning costs to edges of the movement
graph, and considering the bounded reachability problem with respect to the total
cost of the execution.

Consider a weighted topological graph G = 〈V,Em, Ec, cost〉, where for each
edge cost(e) is the cost of e, a positive integer.

One could consider several ways of aggregating the weights along executions.
We consider the case where the weights correspond to travel times between vertices,
and the goal is to minimize total travel time, which also implies minimizing battery
usage in drone applications. We consider a synchronous setting where all agents syn-
chronize at each configuration in the plan; therefore, the travel time between two
configurations is the maximum of the weights of the edges along which agents travel.
In other terms, we assume that agents wait for each other at each step of the execution.

Formally, for an execution c0, c1, . . . , ck, the total cost is defined as follows:

k−1∑
i=0

max
j∈{1,2,...,n}

cost(ci[j], ci+1[j]), (1)

where ci[j] denotes the vertex occupied by agent j at configuration ci. Assuming
binary encoding of all weights, we are interested in checking the existence of an
execution of bounded cost, and that of a covering execution of bounded cost.

When weights are encoded in unary, both reachability and coverage problems
are NP-hard since when all costs are equal to 1, then the problems are identical to
bReachability and bCoverage, respectively. Since all weights are natural numbers,
the length of the execution is not more than the cost bound given in input. Thus,
similarly to Proposition 2, one can guess an execution and bound its length with a
polynomial number of guesses.

Theorem 11 The weighted variants of bReachability, bCoverage on directed and
undirected topological graphs with unary encoding are NP-complete.

When the weights are encoded in binary, then the problems are PSPACE-hard
as shown in Section 8.1; and the PSPACE algorithms can be extended to establish
PSPACE-completeness.

Theorem 12 The weighted variants of bReachability, bCoverage on directed and
undirected topological graphs with binary encoding are PSPACE-complete.

8.3 Bounded Disconnection

Another extension consists in allowing the agents to be disconnected for a bounded
number of steps along the execution. Such a feature can be desirable in order to allow
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the agents to reach difficult locations where communication cannot be guaranteed.
By bounding the disconnection time, the connection with the base is only disturbed
temporarily.

This extension is also PSPACE-complete. In fact, our membership results can eas-
ily be extended both for reachability and coverage problems. For PSPACE-hardness,
observe that when the allowed bound is 0, the problems become identical to our set-
ting, so all hardness proofs carry over.

8.4 Collisions

Collision constraints consist in disallowing several agents to share the same location
at a given time, and provide an interesting extension of our setting. In our case, we
allow several agents to be at the base but not at other nodes.

The PSPACE-completeness results hold by using the same reductions used for
the proof of Theorems 3 and 4 from the collision-free variant problem of Tateo et al.
[54]. Indeed, the reductions gadgets used are collision-free, and thus we obtain:

Theorem 13 The variants of Reachabilityund, Reachabilitydir, Coverageund and
Coveragedir with collision constraints are PSPACE-complete.

We can show that when the topological graph is sight-moveable, then the com-
plexity of deciding the reachability and coverage without allowing collisions is un-
changed. We use the same membership proof of Proposition 3 and 4. Indeed, a posi-
tive instance of Reachabilitysm (resp. Coveragesm) is a positive instance of Reachabilitysm
(resp. Coveragesm) with collision constraints. In order to obtain a collision-free ex-
ecution, it suffices to modify as follows: we consider an ordering, as depicted in
Figure 7, and consider each branch one by one. For each branch, we dispatch first the
agent with the furthest target from the base, followed by the second furthest agent
and so on. This yields a collision-free execution for Reachabilitysm. Coveragesm can
be solved by a repeated application of Reachabilitysm. Observe that Reachabilitycc
and Coveragecc can use the same algorithms.

Theorem 14 The variants of Reachabilitysm, Reachabilitycc (resp. Coveragesm and
Coveragecc) with collision constraints are in LOGSPACE (resp. NLOGSPACE).

Regarding the bounded versions, the membership of Proposition 2 hold without
allowing collisions. Indeed, checking if the path contains a collision can be done in
polynomial-time. The lower bound can be showed by reduction from the MAPF prob-
lem to bReachabilitycc. Additionally, the proof of Theorem 8 holds without allowing
collisions given that the proof holds for a single agent.

Theorem 15 The variants of bReachability? and bCoverage? without collisions are
NP-complete for all ? ∈ {und, dir, sm, cc}.
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8.5 Planar Movement Graphs

One could wonder whether the complexity of these problems change when restricted
to topological graphs whose movement graphs are planar. This is an interesting ques-
tion since in targeted applications the graphs are indeed planar; and some problems
are known to become easier on planar graphs (e.g. the shortest path computation
[30]). In this section, we show that our reductions proving the PSPACE-hardness
of Reachabilityund, Coverage-initund, Coverageund and Reachabilitysm use planar
graphs, which means that these hardness results hold even when the input is restricted
to planar graphs.

Actually, the proof of Reachability-initund, in [54], uses a planar movement
graph. They even prove a stronger result: the reachability problem is PSPACE-hard
even for graphs that are disjoint unions of paths2.

Let us consider an instance (GReachinit , B, s, t) of Reachability-initund where
GReachinit is a topological graph that is a disjoint union of paths (depicted in the
middle of Figure 13), B is its base, s = (s1, . . . , sn) is initial configuration for n
agents, depicted at the bottom of GReachinit

in Figure 13 and t = (t1, . . . , tn) is the
target configuration (the target nodes t1, . . . , tn are in GReachinit

as defined in [54]
but are not displayed in the figure).

Then as shown in Figure 13, the gadgets we proposed in this article can all be
arranged to obtain planar graphs as well.

1. The gadget given in Figure 4, used in the proof of Theorem 3 is a planar graph;
in fact, it can be arranged, to obtain GReach (in Fig. 13) whose base is B′ and is
designed for n + 2 agents. This proves that Reachabilityund is PSPACE-hard on
planar graphs.

2. We consider now the reduction of Figure 5 used in proof of Lemma 1, which
contains GReach. This reduction, named GCoverinit in Figure 13 is also planar. The
base of this graph is still B′, and it is designed for n + 2 + n + 2 = 2n + 4
agents. In this reduction, the first n+2 agents start in B′ while the others start in
v11 , . . . , v

1
n+2. Indeed, the latter gadget is disconnected from the rest of the graph,

except that the node v41 has a movement edge to all nodes in the graph. One can
observe that a movement edge can be created from v41 to all nodes in the graph
GReach, while keeping the construction planar, thanks to the particular structure
of GReach. This shows that Coverage-initund is PSPACE-hard on planar graphs.

3. Finally, we can add the gadget of Figure 4 used in proof of Theorem 4, shown in
the top part of Figure 13. We thus obtainGCover designed for 2n+4+2 = 2n+6
agents starting at the baseB′′, which is the reduction of Theorem 4. The obtained
graph is also planar. This shows that Coverageund is PSPACE-hard on planar
graphs.

To sum up:

2 Their reduction is from a problem called the reconfiguration problem on constraint graphs.
The topological graph computed from a constraint graph contains single nodes ( ), paths of length
3 (which we denote by ) and a single path graph of length |E| (denoted by

. . . ), with E the set of edges in the constraint graph.
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GReachinit

GReach

GCoverinit

GCover

B

B′

v′1 v′2 v′n

v1 v2 vn

v′n+1 v′n+2

vn+1 vn+2

s1 s2 sntn+1 tn+2

v11 v12 v1n+2

v41

B′′

v1 . . . vn+2 vn+2+1 . . . vn+2+n+2vn+2+n+3 vn+2+n+4

v′1 . . . v′n+2 v′n+2+1
. . . v′n+2+n+2v′n+2+n+3 v′n+2+n+4

tn+2+n+3 tn+2+n+4

Fig. 13: Summary of all the planar constructions.
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Theorem 16 Reachabilityund, Coverage-initund and Coverageund are PSPACE-hard
on planar graphs.

9 Conclusion

The main result of this paper is the introduction of sight-moveable topological graphs.
Indeed, being able to decide in NLOGSPACE whether the reachability or the cover-
age can be done is an important improvement over the previous results. However, this
class does not yield an improvement for the optimization of the execution.

We have studied numerous variants of the defined problems in the hope to give a
complete overview of this new extension of the MAPF problem. Unfortunately, we
still lack results for some of these variants. Furthermore, it is also unclear whether
the combination of these variants can yield higher complexity. Additionally, there are
still many variants of MAPF that have not been extended to these problems.

In realistic situation, the topological graph may not be fully known in advance.
Indeed, the discretization may not represent faithfully the area in which the agents
evolve. Thus, we attend to extend this work to incomplete knowledge in which the
agents only have a over-approximation of the actual topological graph. While the
agents move around the area they can observe the graph and update their knowledge.

In addition, if we consider the variants with bounded disconnection, introduced
in Subsection 8.3, with incomplete knowledge we fall in the setting of imperfect
information. In this setting, an agent can fail to reconnect during the mission and the
cooperation needs to consider the possible cause of this disconnection to finish the
plan.

Finally, not only can the area be partially known by the agents but some mishaps
can happen during the mission. Indeed, an external actor might disable an agent and,
in this setting, the group of agent should have to find the agent or finish the mission
without it. In the weighted graph extension (Subsection 8.2), mishaps can also be due
to strong wind which modifies the cost of the movement.
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